Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Department History
    • News
    • Departmental Announcements
    • In Memoriam
    • Contacts and Information
    • Jobs
    • Buildings
    • Cycling
    • Parking
    • Transit
    • Walking
  • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Current Students
    • Prospective Students
    • Funding
    • Apply to TA
    • Courses & Modules
    • Wellness Resources
    • Student Handbook & Forms
    • Zoology Graduate Student Association
    • Contact
  • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Recorded Seminars
    • Event Archive
  • Resources
    • Workday
    • COVID-19 Safety
    • Zoology Webmail (log in)
    • Password Change (log in)
    • BRC-Zoology Room and Vehicle Bookings (log in)
    • North and East wing Biosci Room Bookings
    • Computing (ZCU)
    • Aquatics (private)
    • Finance
    • HR: Human Resources
    • Safety
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Equity, Diversity and Inclusion Committee (private)
    • Major Zoology Committees (private)
    • Departmental Meeting Notes (private)
    • Zoology Policies (private)
    • Peer Review of Teaching (private)
    • Shipping & Receiving
    • Building access: keys and cards
    • Zoology Logo
    • Edit My Profile (private)
  • Log In

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Department History
    • About the "Huts"
  • News
  • Departmental Announcements
    • Women in Science: Dr. Diane Srivastava
    • 2022
    • 2021
    • 2020
    • 2019
  • In Memoriam
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Cycling
  • Parking
  • Transit
  • Walking

Specializations in optic flow neurons of hummingbirds and zebrafinches

July 4, 2022

"In other journals" - Science, Jun 30, 2022: Nimble neurons enable nimble flight

____________

Graham Smyth, Vikram B. Baliga, Andrea H. Gaede, Douglas R. Wylie, Douglas L. Altshuler. 2022. Specializations in optic flow encoding in the pretectum of hummingbirds and zebra finches. Current Biology

Summary
All visual animals experience optic flow—global visual motion across the retina, which is used to control posture and movement. The midbrain circuitry for optic flow is highly conserved in vertebrates, and these neurons show similar response properties across tetrapods. These neurons have large receptive fields and exhibit both direction and velocity selectivity in response to large moving stimuli. Hummingbirds deviate from the typical vertebrate pattern in several respects. Their lentiformis mesencephali (LM) lacks the directional bias seen in other tetrapods and has an overall bias for faster velocities. This led Ibbotson to suggest that the hummingbird LM may be specialized for hovering close to visual structures, such as plants. In such an environment, even slight body motions will translate into high-velocity optic flow. A prediction from this hypothesis is that hummingbird LM neurons should be more responsive to large visual features. We tested this hypothesis by measuring neural responses of hummingbirds and zebra finches to sine wave gratings of varying spatial and temporal frequencies. As predicted, the hummingbird LM displayed an overall preference for fast optic flow because neurons were biased to lower spatial frequencies. These neurons were also tightly tuned in the spatiotemporal domain. We found that the zebra finch LM specializes along another domain: many neurons were initially tuned to high temporal frequencies followed by a shift in location and orientation to slower velocity tuning. Collectively, these results demonstrate that the LM has distinct and specialized tuning properties in at least two bird species.

Department of Zoology
4200 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail info@zoology.ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility