Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Message from Head
    • Department History
    • News
    • Publications
    • ZOOTAILS - the zoology newsletter
    • Welcome New Faculty
    • In Memoriam
    • Departmental Announcements
    • Contacts and Information
    • Jobs
    • Buildings
    • Transportation & Parking
  • People
    • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Graduate Program
    • Prospective Students
    • Newly Admitted Students
    • Current Students
    • Program Policies & Procedures
    • Student Resources
    • Department Forms
    • Zoology Graduate Student Association
    • Student Stories
    • Contacts
  • Events
    • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Event Archive
  • Resources
    • Biostats and Data Science Faculty search (CWL login)
    • Resources
    • Safety
    • Onboarding
    • Workday
    • Building access: keys and cards
    • Room and Vehicle Bookings: Biosci & BRC (log in)
    • Room Bookings: North & East wings Biosci
    • Shipping & Receiving
    • Staff Directory
    • Aquatics (private)
    • Computing (ZCU)
    • Finance
    • HR: Human Resources
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Internal pages (private)
    • Recycling initiatives
    • Zoology Logo
    • Zoology Workshop
  • CWL Login

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Message from Head
  • Department History
    • About the "Huts"
  • News
  • Publications
  • ZOOTAILS - the zoology newsletter
  • Welcome New Faculty
  • In Memoriam
  • Departmental Announcements
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Transportation & Parking

New publication: Madison Earhart et al. The Biological Bulletin

October 27, 2022
Figure 1. Interactive effects of oxygen and temperature in aquatic environments. High temperature increases the likelihood of aquatic hypoxia by decreasing gas solubility, altering mixing, and increasing the metabolic activity of microorganisms. Particularly in areas affected by eutrophication, this can cause large declines in water oxygenation, resulting in hypoxia or anoxia. High temperature and hypoxia also have interacting effects on fish through their joint effects on energy supply and demand, because increasing temperature increases demand while hypoxia reduces energy supply. These effects at the biochemical level cascade up to affect processes at the physiological level, such as cardiovascular and muscle function, which in turn affect whole-organism growth and performance and tolerance. ATP, adenosine triphosphate. Illustrated by Rashpal S. Dhillon

Madison L. Earhart, Tessa S. Blanchard, Adam A. Harman, and Patricia M. Schulte. 2022. Hypoxia and High Temperature as Interacting Stressors: Will Plasticity Promote Resilience of Fishes in a Changing World?

Abstract
Determining the resilience of a species or population to climate change stressors is an important but difficult task because resilience can be affected both by genetically based variation and by various types of phenotypic plasticity. In addition, most of what is known about organismal responses is for single stressors in isolation, but environmental change involves multiple environmental factors acting in combination. Here, our goal is to summarize what is known about phenotypic plasticity in fishes in response to high temperature and low oxygen (hypoxia) in combination across multiple timescales, to ask how much resilience plasticity may provide in the face of climate change. There are relatively few studies investigating plasticity in response to these environmental stressors in combination; but the available data suggest that although fish have some capacity to adjust their phenotype and compensate for the negative effects of acute exposure to high temperature and hypoxia through acclimation or developmental plasticity, compensation is generally only partial. There is very little known about intergenerational and transgenerational effects, although studies on each stressor in isolation suggest that both positive and negative impacts may occur. Overall, the capacity for phenotypic plasticity in response to these two stressors is highly variable among species and extremely dependent on the specific context of the experiment, including the extent and timing of stressor exposure. This variability in the nature and extent of plasticity suggests that existing phenotypic plasticity is unlikely to adequately buffer fishes against the combined stressors of high temperature and hypoxia as our climate warms.

Department of Zoology
#3051 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail zoology.info@ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility