Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Department History
    • News
    • Departmental Announcements
    • In Memoriam
    • Contacts and Information
    • Jobs
    • Buildings
    • Cycling
    • Parking
    • Transit
    • Walking
  • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Current Students
    • Prospective Students
    • Funding
    • Apply to TA
    • Courses & Modules
    • Wellness Resources
    • Student Handbook & Forms
    • Zoology Graduate Student Association
    • Contact
  • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Recorded Seminars
    • Event Archive
  • Resources
    • Workday
    • COVID-19 Safety
    • Zoology Webmail (log in)
    • Password Change (log in)
    • BRC-Zoology Room and Vehicle Bookings (log in)
    • North and East wing Biosci Room Bookings
    • Computing (ZCU)
    • Aquatics (private)
    • Finance
    • HR: Human Resources
    • Safety
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Equity, Diversity and Inclusion Committee (private)
    • Major Zoology Committees (private)
    • Departmental Meeting Notes (private)
    • Zoology Policies (private)
    • Peer Review of Teaching (private)
    • Shipping & Receiving
    • Building access: keys and cards
    • Zoology Logo
    • Edit My Profile (private)
  • Log In

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Department History
    • About the "Huts"
  • News
  • Departmental Announcements
    • Women in Science: Dr. Diane Srivastava
    • 2022
    • 2021
    • 2020
    • 2019
  • In Memoriam
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Cycling
  • Parking
  • Transit
  • Walking

New publication: Andrea Gaede et al. Journal of Neurophysiology

December 8, 2021

Andrea H Gaede, Vikram B Baliga, Graham Smyth, Cristian Gutiérrez-Ibáñez, Douglas L Altshuler, and Douglas R Wylie. 2021. Response Properties of Optic Flow Neurons in the Accessory Optic System of Hummingbirds vs. Zebra Finches and Pigeons. Journal of Neurophysiology

Abstract
Optokinetic responses function to maintain retinal image stabilization by minimizing optic flow that occurs during self-motion. The hovering ability of hummingbirds is an extreme example of this behaviour. Optokinetic responses are mediated by direction-selective neurons with large receptive fields in the accessory optic system (AOS) and pretectum. Recent studies in hummingbirds showed that, compared to other bird species, (i) the pretectal nucleus lentiformis mesencephali (LM) is hypertrophied, (ii) LM has a unique distribution of direction preferences, and (iii) LM neurons are more tightly tuned to stimulus velocity. In this study, we sought to determine if there are concomitant changes in the nucleus of the basal optic root (nBOR) of the AOS. We recorded the visual response properties of nBOR neurons to largefield drifting random dot patterns and sine wave gratings in Anna's hummingbirds and zebra finches and compared these with archival data from pigeons. We found no differences with respect to the distribution of direction preferences: Neurons responsive to upwards, downwards and nasal-to-temporal motion were equally represented in all three species, and neurons responsive to temporal-to-nasal motion were rare or absent (<5%). Compared to zebra finches and pigeons, however, hummingbird nBOR neurons were more tightly tuned to stimulus velocity of random dot stimuli. Moreover, in response to drifting gratings, hummingbird nBOR neurons are more tightly tuned in the spatio-temporal domain. These results, in combination with specialization in LM, supports a hypothesis that hummingbirds have evolved to be "optic flow specialist" to cope with the optomotor demands of sustained hovering flight.

Department of Zoology
4200 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail info@zoology.ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility