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Is the air-breathing organ a significant route for CO2 excretion during 
aquatic hypercapnia in the pirarucu, Arapaima gigas?
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2 = i 2 + f 2 a is 

Therefore, the value obtained is the minimum breath volume 
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Results
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Respiratory patterns during exposure to aquatic 

hypercapnia

2 optodes in the air cham-
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2 2
Series 1 1, 2) 

and Series 2 4, 5
2020) and those of many others on Arapaima 

1978
1978 2004 1996

2010 2020 2022
2022 -

2

2

-
2

Arapaima 2022

1981a, b -
eron 1982 2017 2023), are able 

2

at least in Arapaim Pangasianodon 

Table 4 2 2 2

2

2
both Series 1 and 2

Means ±

2  
h )

1067 ± 212  1384 ± 218B 1325 ± 356  

2  
h )

2293 ± 556  2474 ± 362  2084 ± 567  

P <

Fig. 7
2 in the air-chamber in the 

2

2 rise in each succes-
sive cycle

 

1 3



Journal of Comparative Physiology B

-
2

The control of air-breathing during aquatic 

hypercapnia

2-sensitive chemoreceptors 
2 stimulate air-breathing in 

-
ham 1997; Milsom 2012 2018; Milsom et 

2021
immunohistochemistry in the epithelia of the gills and oro-
branchial cavity of Arapaima 2020

2 also stimulate air-

2021), but not previously in Arapaima, to our 

2, a response 
mediated through both central and peripheral chemorecep-

1981 2021 Arapaima, it 
-

2

2 -

2
1978) in Arapaima 2018) in the 

Chitala ornata
2

2019) pointed to increased 
2 Chitala; com-

The pattern and effectiveness of air-breathing 

during exposure to aquatic hypercapnia

-
-

than indicated by the data in Table 3

6B, in certain sections of 
-

breath volume yielded only the minimum volume needed 

2 2, 
2 accumula-

tion or respiratory acidosis relative to normocapnic con-

2
-

2

Nitrogenous waste excretion and metabolic fuel use 

under normocapnia and hypercapnia

-
Series 1 3) and Series 

2 2

2010 2020 2020

1965 1996

Series 1, 

on Arapaima
2022 -

2020
Series 2 -

Series 1
1 and 2), 

-
Series 2 versus 2–4 days in Series 

1 2020) have discussed the characteristic of 

contrast to the protein conservation strategy seen in most 

3 1) seen during 
2 in Series 1, did not occur in 

Series 2 2 Series 1

3

2, 3
not occur in Series 2

1 3



Journal of Comparative Physiology B

2

2

2
-

2

2

hypercapnic in tropical ecosystems, and the ability of the 
2

-

Supplementary Information The online version contains 
supplementary material available at 
2 4 - 0 1 5 9 7 - 7 

Acknowledgements

-

2 -
-

Author contributions

-

Data availability

Declarations

Ethical approval

Competing interests

References

Arapaima gigas

2
air-breath volumes in pirarucu under control conditions 

2020 2

3

2, the 

-
2 -

7; Table 4
2 as 

2 level continued to increase, improving the 
2

distribution, red cell function, and breathing patterns in the 

1978) 
in Arapaima -

2 -
capnia seen in both Series 1 S1) and 
Series 2

2 -
1978 2

2 2

2

2

2 2

Perspectives

2021), there 
2

2 partitioning, and the pres-
-

2

2 -
2 Arapaima 

gigas
parallels a classic study done 45 years ago on another obli-

Tricho-
gaster trichopterus 1979

1 3



Journal of Comparative Physiology B

2 -

-

-

-

-
2 2

Arapaima gigas

2 0 - 0 1 2 8 6 - 1       
-

Arapaima gigas

Amia calva 

2 2

-

2
-

latory aspects of the osmorespiratory compromise during acute 

-

-

Arapaima gigas

-
-

-

-

2 2 
Arapaima gigas, and the fac-

ultative air breather, Lipossarcus pardalis

-
sition in organ function during the evolution of air-breathing; 
insights from Arapaima gigas, an obligate air-breathing teleost 

Trichogaster trichopterus
-

-

Hoplerythrinus unitaeniatus and Arapaima gigas

-
nian teleosts, Arapaima gigas and Hoplerythrinus unitaeniatus

-

Arapaima gigas

-
chial morphology on gill function in Arapaima gigas

early tetrapods, the evolution of vertebrate air breathing, and the 

-

1 3



Journal of Comparative Physiology B

Astrono-
tus ocellatus

-
ney for ionoregulation in the obligate air-breathing Arapaima 
gigas

-

Arapaima gigas

Publisher’s note -

manuscript version of this article is solely governed by the terms of 

-
Chitala ornata, to hyper-

Chitala ornata, 

-
-

-

Arapaima gigas

1 3


