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ABSTRACT
The vertebrate gut microbiota is a critical determinant of organismal function, yet whether and how gut microbial communities 
affect host fitness under natural conditions remains largely unclear. We characterised associations between a fitness proxy—in-
dividual growth rate—and bacterial gut microbiota diversity and composition in threespine stickleback fish introduced to large 
semi-natural ponds. We detected a 63% higher richness of bacterial taxa (α-diversity) in the guts of high-fitness fish compared to 
low-fitness fish, which might be driven by stronger bacterial dispersal among high-fitness fish according to the fit of a neutral 
community model. Further, microbial communities of high-fitness fish were more similar to one another (i.e., exhibited lower 
β-diversity) than those of low-fitness fish. The lower β-diversity found to be associated with higher host fitness is consistent with 
the Anna Karenina principle—that there are fewer ways to have a functional microbiota than a dysfunctional microbiota. Our 
study links differences in α- and β-diversity to a fitness-related trait in a vertebrate species reared under naturalistic conditions 
and our findings provide a basis for functional tests of the fitness consequences of host-microbiota interactions.

1   |   Introduction

There is increasing recognition of the contribution of the gut mi-
crobiota, the microbial community associated with a host's gut, to 
the evolution of multicellular hosts (Henry et al. 2021; Kolodny and 
Schulenburg 2020), and host–microbe interactions appear to be a 
universal feature of eukaryotes (Youngblut et al. 2019; Thompson 
et al. 2017; Trivedi et al. 2020). Biotic interactions between animals 
and their gut microbiota can affect host traits crucial for determin-
ing host performance and survival via effects on metabolism, reg-
ulation of the immune system, disease susceptibility, behaviour 

and stress tolerance (Turnbaugh et al. 2006; Lathrop et al. 2011; 
Houwenhuyse et al.  2021; Vuong et al.  2017; Bates et al.  2022). 
Microbes can also affect niche use, enabling metabolism of 
novel dietary resources (Henry et al. 2021; Gould et al. 2018). Yet 
only few studies have explored the precise relationship between 
fitness-related host traits and the gut microbiota in free-living, 
non-domesticated, vertebrates (Davidson et  al.  2021; Worsley 
et al. 2021; Risely et al. 2023). In sum, while there is increasing 
evidence that gut microbiota differences can alter an organism's 
performance and survival, we still have limited knowledge on the 
mechanisms underlying this relationship.
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There is some evidence linking gut microbiota diversity with 
host performance and these observed patterns may extend to 
overall host fitness, which allows making testable predictions. 
For example, lower bacterial diversity within a host's gut (α-
diversity) appears to be commonly associated with disease 
states (Kriss et al. 2018) and higher α-diversity has been shown 
to be correlated with higher survival rates (Bestion et al. 2017) 
and body condition (Stoffel et  al.  2020). While the evidence is 
limited, these results indicate that higher α-diversity may be 
associated with higher host fitness. Yet, other studies detected 
no (Worsley et al. 2021; Goertz et al. 2019) or even negative as-
sociations between α-diversity and host condition (Davidson 
et al. 2021). Further, the extent of dissimilarity in gut microbi-
ota composition (β-diversity) might also be associated with host 
performance. This pattern may be akin to the Anna Karenina 
principle for animal microbiomes, which states that ‘all healthy 
microbiota are similar; each dysbiotic microbiota is dysbiotic in 
its own way’ (Zaneveld, McMinds, and Vega Thurber 2017). This 
is based on the prediction that differences in host-associated mi-
crobial communities induced by environmental perturbations 
are stochastic and, thus, lead to greater dissimilarity in gut mi-
crobiota composition (i.e., higher β-diversity) among dysbiotic 
hosts. The Anna Karenina principle was originally developed to 
explain the observed effects of perturbations and stress on mi-
crobiota diversity. However, the framework could be extended to 
the context of host fitness, leading to the prediction that higher 
β-diversity is associated with reduced host fitness.

Differences in microbial community dynamics as well as in-
terhost dispersal could also potentially affect host fitness, for 
example, by sharing beneficial bacteria that allow metabolis-
ing a broader range of nutrients or by increasing microbiome 
diversity which can be beneficial for host organisms (Bestion 
et al. 2017; Stoffel et al. 2020). Microbial community dissimilar-
ity (β-diversity) can be affected by the extent of bacterial disper-
sal among hosts. The role of dispersal in shaping structure and 
function of bacterial communities is increasingly acknowledged 
(Albright and Martiny 2018), including in animal microbiomes 
(Burns et al. 2017). For example, studies of wild animal popula-
tions revealed that social interactions among hosts, which can 
facilitate microbial exchange, predict microbiome composition 
(Tung et  al.  2015). These results indicate that the nature and 
frequency of host–host interactions may affect how commonly 
microbes are shared. Thus, studying animal microbiomes using 
metacommunity theory, which describes the movement of spe-
cies among distinct local communities, can provide crucial in-
sights into microbiome dynamics (Leibold et al. 2004).

While some studies have started exploring the fitness effects 
of host-microbiota interactions in wild vertebrate populations, 
still insights predominantly come from a few invertebrate model 
systems reared under laboratory conditions and commonly in-
volve experimental gut microbiota manipulation (e.g., via an-
tibiotic treatment) (Weiland-Brauer et al. 2020; Sison-Mangus, 
Mushegian, and Ebert  2015). Because many environmental 
variables in the laboratory are substantially different from natu-
ral environments, it is critical to evaluate host fitness-gut micro-
biota relationships in natural settings to better understand the 
impact on host biology (Suzuki  2017). Yet, making inferences 
in wild individuals can be complicated because individual host 
fitness as well as the gut microbiota are influenced by a range 

of abiotic and biotic factors that are often difficult to account 
for or measure, such as the rearing environment or age of the 
organism. By controlling such host and environmental factors, 
experiments conducted under naturalistic conditions provide a 
powerful opportunity to investigate associations between the 
gut microbiota and fitness-related host traits.

Here, we leveraged a unique field-based experimental infra-
structure to determine whether bacterial gut microbiota di-
versity is associated with differences in growth rate—a test of 
the predictions for α- and β-diversity outlined above (Figure 1). 
We used threespine stickleback fish (Gasterosteus aculeatus; 

FIGURE 1    |    Benthic and limnetic fish from Paxton Lake (PAX), 
Priest Lake (PRI) and Little Quarry (LQU) were reared in aquaria until 
an age of 78–119 days post-hatch (dph). Then, they were introduced 
into three ponds in different combinations and the experiment ran for 
72–99 days. Their fitness was assessed by growth rate (nlow-fitness = 121, 
nhigh-fitness = 119) and gut microbiota α- and β-diversity was quantified 
based on 16S rRNA gene sequencing data.
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hereafter ‘stickleback’), an emerging model system for eco-
evolutionary gut microbiota research (Rennison, Rudman, and 
Schluter 2019; Bolnick et al. 2014; Smith et al. 2015; Härer and 
Rennison  2024). Stickleback are well-suited for studying gut 
microbiota-mediated fitness effects because growth rate can be 
used as a fitness proxy since body size is strongly positively cor-
related with fitness via higher fecundity and overwinter survival 
(Sparkes et al. 2013; Moser, Roesti, and Berner 2012; Thompson 
and Schluter 2022). To obtain first insights into gut microbiota–
host fitness associations, we introduced different combinations 
of ecologically divergent benthic and limnetic ecotypes origi-
nating from three lakes in British Columbia, Canada, into three 
large experimental ponds and characterised the gut microbiota 
of individuals with the lowest (low-fitness fish) and highest 
(high-fitness fish) growth rates from each source population 
and pond (Figure 1 and Figure S1). In addition to testing asso-
ciations between host fitness and α- and β-diversity, we further 
explored the mechanisms shaping gut microbiota dynamics by 
testing whether bacterial interhost dispersal as well as the con-
tribution of neutral and non-neutral process to gut microbiota 
community structure differ between fitness groups. Our study 
provides novel insights by assessing host fitness-gut microbiota 
associations on the individual host level in free-living animals 
under naturalistic conditions.

2   |   Materials and Methods

2.1   |   Experimental Design

All fish used for this study were part of an experiment study-
ing the fitness consequences of hybridisation between ‘parallel’ 
ecotypes (no hybrids were used herein), and we refer readers 
to Thompson and Schluter (Thompson and Schluter  2022) for 
more detailed information about the experiment. Briefly, par-
ents of the experimental fish were raised from hatching in a 
common laboratory environment and pure within-population 
crosses were made between unrelated and lab-hatched fish of 
benthic and limnetic populations (variously called ‘species’ or 
‘ecotypes’) from each of Paxton, Priest and Little Quarry Lakes, 
in British Columbia, Canada (Figure  1). Their offspring—our 
focal fish—were raised in aquaria until 78–119 days post-hatch 
(dph) and fed a common diet. Aquaria were either static or 
connected to a recirculating system, and low and high fitness 
fish were equally distributed between these two aquaria types 
(nlow-fitness, static = 89, nhigh-fitness, static = 89, nlow-fitness, recirculating = 32, 
nhigh-fitness, recirculating = 30; see Section 2.2 for information about 
fitness groups). For the experiment, fish were kept in three un-
manipulated semi-natural ponds (25 × 15 m including benthic 
and limnetic habitats) on the University of British Columbia 
campus (Arnegard et al. 2014). While we did not measure phys-
iochemical parameters of the ponds (e.g., temperature, salinity, 
pH or light exposure), we expect these conditions to be similar 
across ponds for several reasons. All ponds have been filled from 
the same water source, are not heated or manipulated in any 
other way, contain the same volume of water and are located 
just meters from each other. Thus, these ponds are exposed to 
the same climatic conditions at the research facility including 
ambient temperature and precipitation and we expect little vari-
ation across ponds. More broadly, we treat ‘pond’ as a variable in 
our analyses. In each pond, there were combinations of benthic 

and limnetic populations from two lakes each (e.g., benthic and 
limnetic fish from Paxton and Priest Lakes in pond 1; Figure 1), 
and fish were kept in the ponds for 72–99 days. At the end of 
the experiment, fish were 158–201 dph. Fish were weighed be-
fore and after the experiment, and sequential coded wire tags 
(Northwest Marine Technology, Anacortes, WA, USA) were 
used for individual identification. There were no differences 
in initial weight, (two sample t-test, t = 0.422, p = 0.673), age 
at the start of the experiment (t = 1.329, p = 0.185) or age at the 
end of the experiment (t = 1.016, p = 0.311) between low-fitness 
and high-fitness fish. Wild progenitors of the fish used in our 
experiment were collected between 2017 and 2019 under the fol-
lowing permit numbers: SU17-258923, SARA17-PPAC-00002, 
MRSU18-288855, SARA18-PPAC-00006, MRSU19-454239, 
SARA19-PPAC-00006. The experiment was conducted in accor-
dance with institutional guidelines under the following animal 
care permit numbers: A16-0044, A20-0050.

2.2   |   Data Collection

Fish from all ponds were exhaustively collected using minnow 
traps, dip nets or from the surface of the pond following rote-
none application and were shortly thereafter euthanised with 
an overdose of MS-222. Next, fish had their wire tags recovered, 
then were weighed, photographed and stored at −20°C in indi-
vidually labelled 15-mL tubes. Growth rate for each individual 
fish—our fitness proxy—was calculated based on weight gain 
during the experiment with linear models using final weight as 
the response variable and initial weight and the days an indi-
vidual spent in the pond during the experiment as fixed effects 
and pond as a random effect. Models for benthic and limnetic 
ecotypes were fitted separately due to substantial differences in 
body size and allometry, see Thompson and Schluter for more 
details (Thompson and Schluter  2022). Sample sizes for each 
population and pond ranged from 31 to 95 (Figure S1). Out of 
these, we sampled approximately 20 fish per population within 
each pond. To maximise our power to detect differences in 
growth rate between stickleback hosts, we selected the 10–12 
slowest growing (i.e., low relative fitness) and the 10–12 fast-
est growing (i.e., high relative fitness) fish from each source 
population and pond. Several samples were later excluded due 
to low sequencing depths, and final sample sizes ranged from 
8 to 12 fish per group (nlow-fitness = 121, nhigh-fitness = 119). This 
sampling design allowed us to test for a difference in a discrete 
outcome (group assignment) rather than a lower-powered con-
tinuous approach. Low- and high-fitness fish differed substan-
tially in growth rate, with high-fitness fish having on average 
between 30.8% and 73.0% higher growth rates across popula-
tions and ponds (Figure  S1). Further, our sample sizes were 
balanced regarding pond (npond1 = 79, npond2 = 81, npond3 = 80), 
lake of origin (nlittle quarry = 75, npaxton = 81, npriest = 84), eco-
type (nbenthic = 122, nlimnetic = 118) and host sex (nfemale = 118, 
nmale = 121, nundetermined = 1).

To collect intestinal tissues, fish were rinsed with 95% EtOH and 
their whole guts were dissected using sterile equipment. We care-
fully removed any gut contents and stored samples in sterile tubes 
at −80°C. DNA was extracted from whole guts with the QIAGEN 
PowerSoil Pro Kit according to the manufacturer's protocol 
(Qiagen, Hilden, Germany) under a sterile laminar flow hood. 
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To characterise microbial communities associated with fish guts, 
we amplified the V4 region of the 16S rRNA gene with barcoded 
515F and 806R primers (https://​github.​com/​Schlo​ssLab/​​MiSeq_​
WetLab_​SOP/​blob/​master/​MiSeq_​WetLab_​SOP.​md). All PCR 
reactions were done in triplicate using the Q5 High-Fidelity 2X 
Master Mix (New England Biolabs, Ipswich, MA) and pooled for 
each fish after amplification. The PCR had a denaturation step 
for 60 s at 98°C, 35 amplification cycles with 10 s at 98°C, 20 s at 
56°C and 60 s at 72°C, and a final elongation at 72°C for 10 min. 
To check for successful amplification, we visualised PCR prod-
ucts by gel electrophoresis (2% agarose gel) and DNA concentra-
tions were measured on a Qubit 4 Fluorometer (Thermo Fisher 
Scientific, Waltham, MA). We included negative controls of ster-
ile water for DNA extraction and PCRs, none of which yielded any 
detectable DNA amplification. All samples were subsequently 
pooled in an equimolar manner for the two libraries (samples 
were either sequenced in 2021 or 2022). At the UC Davis Genome 
Center, libraries were purified by bead clean-up and DNA qual-
ity was checked on a Bioanalzyer (Agilent Technologies, Santa 
Clara, CA). The final libraries were sequenced on the Illumina 
MiSeq 600 (PE300) platform.

To obtain information on diet, we collected muscle tissue to de-
termine stable isotope ratios of carbon (δ13C) and nitrogen (δ15N), 
which allow detecting diet variation associated with benthic and 
limnetic habitats in stickleback (Arnegard et al. 2014; Bolnick 
and Ballare 2020). Muscle tissues were dried at 55°C and sub-
sequently homogenised to a powder, 1 mg of each sample was 
loaded into a tin capsule and combusted in a Elementar vario 
EL cube elemental analyser interfaced to an Elementar VisION 
IRMS (Elementar Analysensysteme GmbH, Germany) at the UC 
Davis Stable Isotope Facility. Laboratory standards indicated 
measurement errors (SD) of ±0.05‰ for δ13C and ± 0.07‰ for 
δ15N. We preserved fin tissue of each fish in 95% EtOH, and after 
DNA extraction the sex of each fish was determined by PCR fol-
lowing the protocol developed by Peichel et al. (2004).

2.3   |   Data Analysis

The data consisted of a total of 9,493,085 raw sequencing reads 
(mean: 39,554 reads/sample) (Table S1). For some samples, we 
obtained low sequencing depths, which were further decreased 
by merging of forward and reverse reads due to filtering during 
this step. Hence, we chose to use 250 bp of the forward reads 
for our gut microbiota analyses, since these reads consistently 
showed higher sequence quality compared to reverse reads yet 
encompassed 86% of the target locus (250 of 291 bp). All up-
stream analyses described below were done in QIIME2 (Bolyen 
et  al.  2019). In order to obtain amplicon sequencing variants 
(ASVs), sequencing reads were checked for quality and cor-
rected, and chimeric sequences were removed using the dada2 
plugin (Callahan et  al.  2016). Next, we used FastTree 2.1.3 to 
assemble a phylogenetic tree of the bacterial lineages (Price, 
Dehal, and Arkin 2010), and bacterial taxonomy was assigned 
based on the SILVA 138 ribosomal RNA (rRNA) database at a 
99% similarity threshold (Quast et al. 2013). Before downstream 
analyses, we excluded ASVs with < 10 reads that were detected 
only in a single sample and ASVs that could not be assigned at 
the class level. We further filtered out ASVs mapping to chlo-
roplasts, mitochondria, cyanobacteria, or archaea to retain the 

bacterial gut microbiota only. ASV counts were normalised 
through scaling with ranked subsampling (SRS) with a Cmin of 
2500 reads (Beule and Karlovsky 2020).

We tested for effects of ecotype, lake-of-origin, carbon and ni-
trogen stable isotope signature, sex, age, rearing aquarium type 
(static vs. recirculating), fitness group and pond on α-diversity 
(i.e., bacterial diversity of individual host fish; ASV richness, 
Faith's phylogenetic diversity and Shannon diversity) and β-
diversity (i.e., gut microbiota dissimilarity between hosts; 
non-phylogenetic: Bray–Curtis dissimilarity, phylogenetic: un-
weighted and weighted UniFrac) (Lozupone and Knight  2005; 
Lozupone et  al.  2011). For α-diversity, we used linear mixed 
effect-models (lmer function in the ‘lme4’ package v1.1-31) (Bates 
et al. 2015) with pond as random effect and all other variables 
as fixed effects and produced analysis-of-variance tables to test 
for statistical significance of the model terms (anova function 
in the ‘lmerTest’ package v3.1-3) (Kuznetsova, Brockhoff, and 
Christensen 2017). Adding sequencing read number as an inde-
pendent variable to the models showed that it had a significant 
effect on ASV richness and Shannon diversity, but difference in 
α-diversity between fitness groups were maintained, indicating 
that the observed effects were not driven by differences in read 
numbers (Table S2).

To compare gut microbiota dissimilarity within and between fit-
ness groups (β-diversity), we used PERMANOVA (adonis2 func-
tion in the ‘vegan’ package v2.6-2) (Anderson  2001; Oksanen 
et  al.  2019). To test whether the magnitude of gut microbiota 
dissimilarity measured within each fitness group differed be-
tween fitness groups, we determined β-diversity dispersion by 
calculating the distance of each fish from the centroid of its 
respective fitness group (PERMDISP; vegan::betadisper). We 
used vegan::adonis2 to calculate p-values for the comparison of 
β-diversity values between fitness groups. Results were consis-
tent across β-diversity metrics, and we only report unweighted 
UniFrac statistics in the main text. Statistics for the other two 
metrics can be found in Table S3.

Higher α-diversity in high-fitness fish could result from dif-
ferences in the cumulative diversity of microbial communities 
(γ-diversity) between fitness groups. Thus, we determined γ-
diversity based on ASV richness for each fitness group. To test 
for significant differences in γ-diversity between fitness groups, 
individual hosts were resampled with replacement 10,000 times 
for each fitness group, γ-diversity was calculated for each iter-
ation and the γ-diversity ratio between the high-fitness group 
and the low-fitness group was determined. We then tested for 
higher γ-diversity in the high-fitness group by calculating the 
proportion of iterations for which the high-fitness group had 
a higher γ-diversity and we determined statistical significance 
from this bootstrap procedure using a two-tailed cut-off of 0.05. 
Differential abundance of bacterial phyla was assessed by anal-
ysis of composition of microbiomes (ANCOM). We further used 
the Sloan Neutral Community Model, which assumes that com-
munity structure is driven solely by chance and dispersal, to 
test for the contribution of neutral and non-neutral process in 
shaping gut microbial community composition among stickle-
back hosts of the same fitness group (Burns et al. 2016; Sloan 
et al. 2006). Based on this model, we inferred estimated values 
of bacterial interhost dispersal as well as ASV frequencies and 
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compared those estimates between fitness groups. Since bacte-
rial dispersal can only occur among fish from the same pond, 
we ran separate models by pond. All statistical analyses were 
done in R v4.2.1 (R Core Team 2022).

3   |   Results

3.1   |   High-Fitness Fish Have a More Diverse Gut 
Microbiota

In agreement with theoretical predictions, the bacterial diver-
sity associated with single hosts (α-diversity) was higher in 
high-fitness fish than in low-fitness fish. This pattern was seen 
for ASV richness (linear mixed-effects model; F1,205.15 = 11.25, 
p = 0.001), Faith's phylogenetic diversity (F1,210.91 = 8.50, 
p = 0.004) and Shannon diversity (F1,165.87 = 6.85, p = 0.010) 
(Figure 2A and Figure S2) after controlling for effects of vari-
ous covariates (see Section 2; Table S2). Median ASV richness 
(192 vs. 118) and Faith's phylogenetic diversity (18.78 vs. 13.98) 
were 63% and 34% higher in high-fitness fish compared to low-
fitness fish, but median Shannon diversity was only 4% higher 
in high-fitness fish (3.85 vs. 3.69). Besides fitness group, we de-
tected an effect of host sex on all three α-diversity metrics (ASV 
richness: F1,216.98 = 7.36, p = 0.007, Faith's phylogenetic diver-
sity: F1,216.75 = 5.78, p = 0.017, Shannon diversity: F1,217.73 = 7.95, 
p = 0.005) (Table S2). The higher ASV richness observed in high-
fitness fish was not reflected by higher cumulative ASV richness 
since γ-diversity was similar for the low- and high-fitness groups 
(4343 and 4387 ASVs; pbootstrapped = 0.186); 2374 ASVs were 

present in both fitness groups whereas 1969 and 2013 ASVs were 
unique to the low- and high-fitness groups, respectively. While 
no ASVs were shared among all members of a fitness group, the 
major bacterial phyla were similar across fitness groups and 
only the bacterial phylum Planctomycetes was more abundant 
in high-fitness fish (ANCOM; W = 22) (Figure 2B).

3.2   |   Gut Microbiota Dissimilarity Is Lower 
Among High-Fitness Fish

Our data support the Anna Karenina principle: gut microbiota 
dissimilarity (β-diversity) was consistently lower among fish 
within the high-fitness group than among fish within the low-
fitness group across the three β-diversity metrics (PERMDISP; 
unweighted UniFrac: F1,239 = 6.96, R2 = 0.028, p = 0.004) 
(Figure 2C). We further detected significant gut microbiota dis-
similarity between low- and high-fitness fish across the three 
β-diversity metrics (PERMANOVA; unweighted UniFrac: 
F1,228 = 3.10, R2 = 0.012, p = 0.001), suggesting that microbial com-
munity composition differs between fitness groups (Figure  2D 
and Table S3). Host sex and age, lake-of-origin, and pond also had 
significant effects on dissimilarity of gut microbiota composition 
across all three metrics (Table  S3). Host ecotype and nitrogen 
signature showed significant effects based on Bray–Curtis dis-
similarity and weighted UniFrac and carbon signature showed a 
significant effect based on Bray–Curtis dissimilarity (Table S3). 
Overall, these results indicate that gut microbial communities 
differ between fitness groups and that they are more similar 
among high-fitness fish than among low-fitness fish.

FIGURE 2    |    High-fitness fish had higher α-diversity (A), higher abundance of Planctomycetes as indicated by the asterisk (*) (B), and lower β-
diversity (distance from fitness group centroid) (C) compared to low-fitness fish. Low- and high-fitness fish further differed significantly in their gut 
microbiota composition (D). Significance thresholds as shown in (A) and (C): **p < 0.01, ***p < 0.001.
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The higher α-diversity and lower β-diversity observed in 
high-fitness fish might be explained by differences in bacte-
rial interhost dispersal within each fitness group. Using a 
neutral community model to estimate bacterial dispersal rates 
among members of each fitness group (Burns et al. 2016; Sloan 
et  al.  2006), we detected consistent evidence for higher esti-
mated rates of bacterial dispersal among high-fitness fish, sug-
gesting stronger dispersal limitation among low-fitness fish 
(Figure 3 and Table S4). At the same time, we found inconsis-
tent patterns regarding the fit of the neutral community model 
for explaining the distribution of ASVs within each fitness 
group. Neutral processes better explained structure of gut mi-
crobial communities for low-fitness fish in one pond, for high-
fitness fish in another pond, whereas model fit was very similar 
in the third pond (Table S4).

4   |   Discussion

In agreement with theoretical predictions and expectations 
from prior empirical studies, we found high-fitness fish, that is, 
the fastest growing fish, to have higher α-diversity and lower 
β-diversity compared with low-fitness fish which might be ex-
plained by differential bacterial interhost dispersal. Thus, our 
study represents an important step in establishing a connection 

between individual host fitness and gut microbiota composition 
in free-living vertebrates. We chose individual growth rate as 
a fitness proxy because of previous knowledge that this trait 
is positively correlated with survival and fecundity (Sparkes 
et  al.  2013; Moser, Roesti, and Berner  2012; Thompson and 
Schluter 2022). We found strong evidence that variation in gut 
microbial communities is clearly associated with a fitness-
related host trait in our system, suggesting that host–gut micro-
biota interactions could therefore alter evolutionary trajectories 
of their hosts (Henry et al. 2021).

Our results imply that higher α-diversity might be beneficial for 
the host, and similar results have been found in a small num-
ber of previous studies (Bestion et al. 2017; Stoffel et al. 2020). 
But how exactly higher α-diversity could promote host growth 
requires further investigation. No single bacterial ASV was 
detected among all members of the high-fitness group, and we 
found little evidence for differentially abundant bacterial phyla, 
which in combination indicates that faster growth is unlikely to 
be driven by a few beneficial taxa. Further, both fitness groups 
harbour a similarly diverse—and partially overlapping—pool 
of bacteria (γ-diversity) with equal proportions of unique taxa, 
illustrating that the less diverse bacterial communities of low-
fitness fish do not merely represent a subset of the more di-
verse bacterial communities of high-fitness fish. However, 
high-fitness fish, on average, capture a larger proportion of the 
γ-diversity within each host individual. The higher α-diversity 
and larger proportion of γ-diversity captured within high-fitness 
fish could be driven by the higher bacterial dispersal that we 
detected among high-fitness fish (Figure 3 and Table S4). This 
is in line with theoretical predictions that α-diversity increases 
with dispersal rate (Mouquet and Loreau 2003).

Despite the observed higher bacterial dispersal rates among 
high-fitness fish, our analysis using a neutral community model 
(Burns et al. 2016; Sloan et al. 2006) did not detect consistent ev-
idence that gut microbiota structure within each fitness group is 
differentially shaped by neutral (e.g., chance and dispersal) and 
non-neutral processes (e.g., microbe–microbe interactions and 
host selection) (Table S4). This neutral model predicts the distri-
bution of microbial taxa across local communities (i.e., individ-
ual host organisms) and the metacommunity (i.e., a population 
of host organisms) by solely incorporating effects of random 
dispersal. While we consistently detected higher bacterial dis-
persal rates among high fitness fish (i.e., higher frequencies of 
occurrence of bacterial ASVs), the relative contributions of neu-
tral and non-neutral processes to microbiome structure do not 
seem to fundamentally differ between fitness groups. The exact 
mechanisms by which higher interhost dispersal among high-
fitness fish is achieved remain to be determined, but differences 
in host–host interactions and social behaviour might play a 
role (Burns et al. 2017; Martinez et al. 2015). Our results imply 
that a more diverse gut microbiota per se could be beneficial, 
for example, by allowing hosts to metabolise a wider range of 
nutrients and therefore exploit novel or broader trophic niches 
(Moeller and Sanders 2020).

We detected higher similarity in gut microbiota composition 
(i.e., lower β-diversity) among high-fitness fish (Figure 2C). This 
pattern might be produced by higher bacterial dispersal among 
high-fitness fish (Figure 3 and Table S4), thereby homogenising 

FIGURE 3    |    Frequency of occurrence of ASVs in low- and high-
fitness fish separated by pond. On average, ASVs were shared among 
more hosts in high-fitness fish (dashed vertical line) compared to low-
fitness fish (solid vertical line), indicating higher dispersal among high-
fitness fish.

 1365294x, 2024, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17571 by D
olph Schluter - U

niversity O
f B

ritish C
olum

bia , W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



7 of 9

microbial community composition as expected based on empiri-
cal (Burns et al. 2017) as well as theoretical studies (Mouquet and 
Loreau 2003). In accordance with the Anna Karenina principle, 
our results suggest that ‘all microbiota conferring high host fit-
ness are similar; each microbiota conferring low host fitness does 
so in its own way’. Evidence for the Anna Karenina principle 
has been mixed and appears to be context-dependent (Ahmed 
et al. 2019; Li et al. 2023; Ma 2020). For example, Anna Karenina 
principle effects were detected in approximately 50% of human 
microbiome associated diseases and the strength of effects ap-
peared to differ across bacterial lineages with varying abun-
dance (Ma 2020). Further, a meta-analysis across terrestrial and 
aquatic hosts found that Anna Karenina principle effects were 
more likely to be observed in hosts with low initial microbiome 
diversity (Li et  al.  2023). Clearly, additional research is needed 
to determine the conditions under which it might be expected. 
Here, we found a pattern consistent with the Anna Karenina 
principle when investigating gut microbiota diversity in relation 
to a fitness-related host trait. To our knowledge, this is the first 
study to provide evidence for the Anna Karenina principle with 
regard to gut microbiota β-diversity effects on within-generation 
host fitness. Albeit speculative at this point, our results suggest 
that patterns consistent with the Anna Karenina principle may 
emerge in a broader range of contexts than previously appreciated 
(Zaneveld, McMinds, and Vega Thurber 2017), but more studies 
are needed to confirm whether this assumption is valid.

The high- and low-fitness groups harbour significantly dis-
similar gut microbial communities. This pattern is consistent 
with observed gut microbiota differences related to host per-
formance and fitness found between treatment groups in lab-
oratory settings (e.g., Gould et al. 2018; Fontaine, Mineo, and 
Kohl 2022). For example, a study in tadpoles showed that ex-
perimental manipulation of the microbiota led to differences 
in thermal tolerance, strongly indicating that variation in mi-
crobial communities affects their hosts' survival (Fontaine, 
Mineo, and Kohl  2022). Similarly, composition and complex-
ity of microbial communities affects a range of fitness-related 
traits (development, reproduction and lifespan) in fruit flies 
(Gould et  al.  2018). While the results of these previous stud-
ies clearly show that microbiota variation can affect various 
aspects of host fitness, our work is so far only correlational. 
Thus, it remains to be tested whether gut microbiota variation 
can indeed cause variation in host fitness in stickleback fish. 
Further, the exact gut microbiota configurations that promote 
higher host fitness remain to be explored, but our study is in 
line with results from a small number of studies that demon-
strated such associations in wild vertebrate populations (e.g., 
Worsley et  al.  2021). Yet, results from wild populations can 
be confounded by a range of environmental variables that are 
often difficult to account for. To control for such unmeasured 
variation, we performed this experiment under naturalistic 
conditions. Crucially, the setting of our study standardised 
both the early-life diet and our analysis accounted for the age 
of fish while allowing fish to occupy and forage in different 
microhabitats; dietary patterns in our experimental ponds (in-
ferred from variation in carbon and nitrogen isotope values; 
Figure S4 and Table S5) correspond to those observed in wild 
stickleback populations, suggesting biologically relevant niche 
use (Matthews et al. 2010). This is important because the ef-
fects of gut microbiota variation on host fitness can depend 

on environmental factors (especially diet) (Cooper, Vavra, and 
Cressler  2021), emphasising that the ecological context may 
strongly affect host-microbiota interactions. Lastly, since gut 
microbes have been shown to shape a range of host phenotypes 
and life history traits (Henry et al. 2021; Suzuki 2017; Sharon 
et  al.  2013; Smith et  al.  2017), future studies should explore 
whether variation in gut microbiota composition impacts other 
fitness-related host traits. Such work would be of particular 
importance since our analyses incorporated only one fitness 
proxy (growth rate), which limits our ability to draw solid con-
clusions about whether and how gut microbial communities 
may directly affect host fitness. Thus, we want to highlight 
that future studies should strive to test for effects of gut mi-
crobiota diversity on other potential fitness-related traits (e.g., 
metabolism and immune system function) or, ideally, direct 
fitness measures (survival and reproduction) to obtain a more 
comprehensive understanding of gut microbiota-mediated fit-
ness effects. Finding consistent associations between the gut 
microbiota and various potential fitness-related host traits 
will be necessary to strengthen the case that microbial com-
munities play a crucial role in determining the fitness of their 
animal hosts. We demonstrate that variation in gut bacterial 
communities is associated with a proxy for stickleback fitness, 
but it remains to be determined whether the observed variation 
is a cause or consequence of differences in host fitness. One 
potential opportunity to determine casualty would be through 
gut microbiota manipulation experiments, a method that has 
been established in several model systems and yielded ground-
breaking results (Turnbaugh et  al.  2006; Smith et  al.  2017). 
Specifically, transferring gut microbial communities of low- 
and high-fitness fish to germ-free recipients could be a pow-
erful approach to link gut microbiota variation directly to host 
fitness. Stickleback can be instrumental for this type of re-
search since protocols for rearing germ-free stickleback larvae 
and producing gnotobiotic fish have previously been developed 
(Milligan-Myhre et al. 2016). Such work would further allow 
studying the mechanisms by which gut microbes affect host 
fitness in more detail, for example, by investigating host phe-
notypes such as immune system function or metabolism that 
could affect growth rate, body condition, and survival. Our 
work provides a foundation for future work aiming to estab-
lish causal relationships through gut microbiota manipulation 
(Smith et al. 2017) and we advocate that such studies be con-
ducted in a diverse range of host organisms to determine the 
generality of host fitness-gut microbiota interactions.
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