References

[adamic01] Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A. Huberman.
Search in power-law networks.
arXiv:cs.NI/0103016, 2001.
[ahmed00] E. Ahmed and A. S. Elgazzar.
On coordination and continuous hawk-dove games on small-world networks.
Eur. Phys. J. B, 18:159-62, 2000.
[albert00] Réka Albert and Albert-László Barabási.
Topology of evolving networks: Local events and universality.
arXiv:cond-mat/0005085, 2000.
[albert00b] Réka Albert, Hawoong Jeong, and Albert-László Barabási.
Error and attack tolerance of complex networks.
arXiv:cond-mat/0008064, 2000.
[albert99] Réka Albert, Hawoong Jeong, and Albert-László Barabási.
The diameter of the world wide web.
Nature, 401:130-131, 1999.
arXiv:cond-mat/9907038.
[alexander99] Jason Alexander and Brian Skyrms.
Bargaining with neighbors: Is justice contagious.
J. Phil., 96:588-98, 1999.
[allegrini98] Paolo Allegrini, Marco Buiatti, Paolo Grigolini, and Bruce J. West.
Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences.
Phys. Rev. E, 57:4558-4567, 1998.
[alstrom94] P. Alstrøm and J. Leão.
Self-organized criticality in the "game of Life".
Phys. Rev. E, 49:R2507-8, 1994.
[anderies98] John Marty Anderies.
Culture, Economic Structure, and the Dynamics of Ecological Economic Systems.
PhD thesis, University of British Columbia, 1998.
[arizmendi99] C. M. Arizmendi.
Fractal analysis for social systems.
arXiv:adap-org/9910001, 1999.
[arneodo96] A. Arneodo, J.-P. Bouchaud, R. Cont, J.-F. Muzy, M. Potters, and D. Sornette.
Comment on "Turbulent cascades in foreign exchange markets".
arXiv:cond-mat/9607120, July 1996.
[arneodo98] A. Arnéodo, J.-F. Muzy, and D. Sornette.
"Direct" causal cascade in the stock market.
Eur. Phys. J. B, 2:277-282, 1998.
[arthur97] W. Brian Arthur, John H. Holland, Blake LeBaron, Richard Palmer, and Paul Tayler.
Asset pricing under endogenous expectations in an artificial stock market.
In W. Brian Arthur, Steven N. Durlauf, and David A. Lane, editors, The Economy as an Evolving Complex System II. Addison-Wesley, 1997.
http://www.santafe.edu/sfi/publications/Working-Papers/96-12-093.ps.
[aukrust90] T. Aukrust, D. A. Browne, and I. Webman.
Critical behavior of an autocatalytic reaction model.
Phys. Rev. A, 41:5294-301, 1990.
[bachelier00] L. Bachelier.
Théorie de la spéculation.
PhD thesis, Ann. Sci. de l'Ecole Normale Supériure, 1900.
[bagnoli91] F. Bagnoli, R. Rechtman, and S. Ruffo.
Some facts of Life.
Physica A, 171:249-64, 1991.
[bagnoli96] F. Bagnoli, P. Palmerini, and R. Rechtman.
Algorithmic mapping from criticality to self-organized criticality.
arXiv:cond-mat/9605066, May 1996.
[bak87] P. Bak, C. Tang, and K. Wiesenfeld.
Self-organized criticality: An explanation of 1/f noise.
Phys. Rev. Lett., 59:381-4, 1987.
[bak88] P. Bak, C. Tang, and K. Wiesenfeld.
Self-organized criticality.
Phys. Rev. A, 38:364-74, 1988.
[bak89] P. Bak, K. Chen, and M. Creutz.
Self-organized criticality in the `game of Life'.
Nature, 342:780-2, 1989.
[bak91] P. Bak and K. Chen.
Self-organized criticality.
Sci. Am., 264:46-53, 1991.
[bak92] Per Bak, Henrik Flyvbjerg, and Benny Lautrup.
Coevolution in a rugged fitness landscape.
Phys. Rev. A, 46:6724-30, 1992.
[bak93] P. Bak and M. Paczuski.
Why nature is complex.
Physics World, pages 39-43, December 1993.
[bak93b] Per Bak and Kim Sneppen.
Punctuated equilibrium and criticality in a simple model of evolution.
Phys. Rev. Lett., 71:4083-6, 1993.
[bak96] Per Bak.
How Nature works: The science of self-organized criticality.
Springer-Verlag, New York, 1996.
[bak97] P. Bak, M. Paczuski, and M. Shubik.
Price variations in a stock market with many agents.
Physica A, 246:430-53, 1997.
arXiv:cond-mat/9609144.
[bak98] Per Bak, Simon F. Nørrelykke, and Martin Shubik.
The dynamics of money.
arXiv:cond-mat/9811094, 1998.
[barabasi01] A. L. Barabási, E. Ravasz, and T. Vicsek.
Deterministic scale-free networks.
Physica A, 299:559-64, 2001.
arXiv:cond-mat/0107419.
[barabasi91] Albert-László Barabási and Tamás Vicsek.
Multifractality of self-affine fractals.
Phys. Rev. A, 44:2730-2733, 1991.
[barabasi99] Albert-László Barabási, Réka Albert, and Hawoong Jeong.
Mean-field theory for scale-free random networks.
arXiv:cond-mat/9907068, 1999.
[barabasi99b] Albert-László Barabási and Réka Albert.
Emergence of scaling in random networks.
arXiv:cond-mat/9910332, 1999.
[bassingthwaighte94] James B. Bassingthwaighte and Gary M. Raymond.
Evaluating rescaled range analysis for time series.
Annals of Biomedical Engineering, 22:432-44, 1994.
[bassingthwaighte95] James B. Bassingthwaighte and Gary M. Raymond.
Evaluation of the dispersional analysis method for fractal time series.
Annals of Biomedical Engineering, 23:491-505, 1995.
[batty95] M. Batty.
New ways of looking at cities.
Nature, 377:574, 1995.
[beesack84] Paul R. Beesack.
Inequalities for absolute moments of a distribution: From Laplace to Von Mises.
J. Mathematical Analysis and Applications, 98:435-57, 1984.
[benhur96] A. Ben-Hur, R. Hallgass, and V. Loreto.
Renormalization procedure for directed self-organized critical models.
Phys. Rev. E, 54:1426-32, 1996.
[benjamin01] Simon C. Benjamin and Patrick M. Hayden.
Multi-player quantum games.
arXiv:quant-ph/0007038, 2001.
[bennett91] C. Bennett and M. Bourzutschky.
`life' not critical?
Nature, 350:468, 1991.
[bergersen99] Birger Bergersen.
Lecture notes: UBC Physics 510, Stochastic Processes in Physics.
http://www.physics.ubc.ca/~birger/root/ (last accessed Dec 13, 2006), 1999.
[bersini94] H. Bersini and V. Detours.
Asynchrony induces stability in cellular automata based models.
In R. A. Brooks and P. Maes, editors, Artificial Life IV, Proceedings of the Fourth International Workshop on the Synthesis,and Simulation of Living Systems, pages 382-7, Cambridge, 1994. MIT Press.
[best97] Michael L. Best.
Models for interacting populations of memes: Competition and niche behavior.
J. Memetics - Evol. Models of Inform. Trans., 1, 1997.
http://www.cpm.mmu.ac.uk/jom-emit/1997/vol1/best_ml.html.
[best99] Michael L. Best.
How culture can guide evolution: An inquiry into gene/meme enhancement and opposition.
Adaptive Behavior, 7:289-306, 1999.
[bhattacharjee01] Somendra M. Battacharjee.
A measure of data-collapse for scaling.
arXiv:cond-mat/0102515, 2001.
[bianconi00] Ginestra Bianconi and Albert-László Barabási.
Bose-Einstein condensation in complex networks.
arXiv:cond-mat/0011224, 2000.
[binmore92] Ken Binmore.
Fun and Games: A Text on Game Theory.
Heath, Lexington, MA, 1992.
[black73] Fischer Black and Myron Scholes.
The pricing of options and corporate liabilities.
J. Political Economy, 81:637-654, 1973.
[blackmore99] Susan Blackmore.
The Meme Machine.
Oxford University Press, Oxford, 1999.
[blank00] Aharon Blank and Sorin Solomon.
Power laws and cities population.
arXiv:cond-mat/0003240, 2000.
[blok(01)] Hendrik J. Blok.
Conditions for memetic driving.
Available from http://www.zoology.ubc.ca/~rikblok/lib/blok(01).html, 2002.
[blok-parallelPoisson] Hendrik J. Blok.
Rik's notes: Updating in simulations of parallel Poisson processes.
Available from http://www.zoology.ubc.ca/~rikblok/lib/blok-parallelPoisson.html, Version 1, October 15, 2004.
[blok00] Hendrik J. Blok.
On the nature of the stock market: Simulations and experiments.
Departmental PhD oral defense, U.B.C., available from http://www.zoology.ubc.ca/~rikblok/lib/blok00.html, 2000.
[blok00b] Hendrik J. Blok.
On the nature of the stock market: Simulations and experiments.
PhD thesis, University of British Columbia, 2000.
Available from http://www.zoology.ubc.ca/~rikblok/lib/blok00b.html, arXiv:cond-mat/0010211.
[blok00c] Hendrik J. Blok.
On the nature of the stock market: Simulations and experiments.
Final PhD oral defense, U.B.C., available from http://www.zoology.ubc.ca/~rikblok/lib/blok00c.html, 2000.
[blok01] Hendrik J. Blok.
Can memes drive genes?
Presentation for Emergent Phenomena discussion group, U.B.C., available from http://www.zoology.ubc.ca/~rikblok/lib/blok01.html, 2001.
[blok02] Hendrik J. Blok.
Statistical properties of financial timeseries.
PIMS-MITACS Math Finance Seminar, U.B.C., available from http://www.zoology.ubc.ca/~rikblok/lib/blok02.html, 2002.
[blok02b] Hendrik J. Blok.
Rock, paper and scissors in space: A demonstration of R2DToo.
SOWD Lab Meeting, Zoology, U.B.C., available from http://www.zoology.ubc.ca/~rikblok/lib/blok02b.html, 2002.
[blok03] Hendrik J. Blok.
Self-affine timeseries analysis.
Guest lecture for U.B.C. Physics 510: Stochastic Processes in Physics, available from http://www.zoology.ubc.ca/~rikblok/lib/blok03.html, 2003.
[blok93] Hendrik J. Blok.
The effect of boundary conditions on critical behaviour in the game of life.
B.Sc. thesis, U.B.C., 1993.
[blok93b] Hendrik J. Blok.
The effect of boundary conditions on critical behaviour in the game of life.
Presentation for B.Sc. thesis, U.B.C., April 1993.
[blok95] Hendrik J. Blok.
Modelling spatially extended populations: A cellular automaton approach.
Assignment for Math 553, U.B.C., March 1995.
[blok95b] Hendrik J. Blok.
Life without bounds: Does the game of Life exhibit self-organized criticality in the thermodynamic limit?
Master's thesis, University of British Columbia, 1995.
Available from http://www.zoology.ubc.ca/~rikblok/lib/blok95b.html.
[blok96] Hendrik J. Blok.
Ph.D. committee meeting.
Presentation for Ph.D. Committee, U.B.C., December 1996.
[blok97] Hendrik J. Blok and Birger Bergersen.
Effect of boundary conditions on scaling in the "game of Life".
Phys. Rev. E, 55:6249-52, 1997.
Available from http://www.zoology.ubc.ca/~rikblok/lib/blok97.html.
[blok97b] Hendrik J. Blok.
Discounted least squares curve fitting.
Available from http://www.zoology.ubc.ca/~rikblok/lib/blok97b.html, 1997.
[blok97c] Hendrik J. Blok and Birger Bergersen.
The effect of boundary conditions on scaling in the game of life.
Presentation for the Complexity Study Group, U.B.C., February 1997.
[blok97d] Hendrik J. Blok.
Parallel (synchronous) vs. continuous (asynchronous) updating in the "game of life".
Presentation for Math 608, U.B.C., November 1997.
[blok97e] Hendrik J. Blok.
Ph.D. committee meeting II.
Presentation for Ph.D. Committee, U.B.C., December 1997.
[blok98] Hendrik J. Blok.
Modelling intentionality: The gambler.
Presentation for Phys 510, U.B.C., available from http://www.zoology.ubc.ca/~rikblok/lib/blok98.html, November 1998.
[blok98b] Hendrik J. Blok.
Extra! Extra! Critical update on `Life'.
Presentation for Peter Wall Inst. Adv. Science, Crisis Points Group, U.B.C., available from http://www.zoology.ubc.ca/~rikblok/lib/blok98b.html, March 1998.
[blok99] Hendrik J. Blok and Birger Bergersen.
Synchronous versus asynchronous updating in the "game of life".
Phys. Rev. E, 59:3876-9, 1999.
Available from http://www.zoology.ubc.ca/~rikblok/lib/blok99.html.
[blok99b] Hendrik J. Blok.
A microscopic simulation of the stock market: Preliminary results.
Presentation for Complexity Study Group, U.B.C., March 1999.
[blok99c] Hendrik J. Blok.
Ph.D. committee meeting IV: Progress at last.
Presentation for Ph.D. Committee, U.B.C., May 1999.
[blythe03] R. A. Blythe and M. R. Evans.
The Lee-Yang theory of equilibrium and nonequilibrium phase transitions.
arXiv:cond-mat/0304120, 2003.
[boccara92] N. Boccara and M. Roger.
Period-doubling route to chaos for a global variable of a probabilistic automata network.
J. Phys. A: Math. Gen., 25:L1009-14, 1992.
[boccara94] N. Boccara, O. Roblin, and M. Roger.
Route to chaos for a global variable of a two-dimensional `game-of-life type' automata network.
J. Phys. A: Math. Gen., 27:8039-47, 1994.
[boccara94b] N. Boccara, K. Cheong, and M. Oram.
A probabilistic automata network epidemic model with births and deaths exhibiting cyclic behaviour.
J. Phys. A: Math. Gen., 27:1585-97, 1994.
[boguna03] Marián Boguñá, Romualdo Pastor-Satorras, Ablert Díaz-Guilera, and Alex Arenas.
Emergence of clustering, correlations, and communities in a social network model.
arXiv:cond-mat/0309263, 2003.
[boguna03b] Marián Boguñá, Romualdo Pastor-Satorras, and Alessandro Vespignani.
Cut-offs and finite size effects in scale-free networks.
arXiv:cond-mat/0311650, 2003.
[bose01] Indrani Bose and Indranath Chaudhuri.
Bacterial evolution and the Bak-Sneppen model.
arXiv:cond-mat/0102273, 2001.
[bouchaud00] Jean-Philippe Bouchaud and Marc Mézard.
Wealth condensation in a simple model of economy.
Physica A, 282:536-45, 2000.
[bouchaud94] J.-P. Bouchaud and D. Sornette.
The black-scholes option pricing problem in mathematical finance: Generalization and extensions for a large class of stochastic processes.
J. Phys. I France, 4:863-81, 1994.
[bouchaud95] J.-P. Bouchaud and D. Sornette.
Reply to mikheev's comment on the black-scholes pricing problem.
J. Phys. I France, 5:219-20, 1995.
[bouchaud98] J.-P. Bouchaud and R. Cont.
A langevin approach to stock market fluctuations and crashes.
European Physical Journal B, 6:543-550, 1998.
[bouchaud99] J.-Ph. Bouchaud.
Elements for a theory of financial risks.
Physica A, 263:415-26, 1999.
[bretthorst88] G. Larry Bretthorst.
Bayesian Spectrum Analysis and Parameter Estimation.
Springer-Verlag, 1988.
Available from http://bayes.wustl.edu/glb/book.pdf.
[brower78] R. C. Brower, M. A. Furman, and M. Moshe.
Critical exponents for the reggeon quantum spin model.
Phys. Lett. B, 76:213-9, 1978.
[brown93] D. Brown and P. Rothery.
Models in Biology: Mathematics, Statistics and Computing.
Wiley, 1993.
[brown97] David P. Brown and Zhi Ming Zhang.
Market orders and market efficiency.
J. Finance, 52:277-308, 1997.
[bull00] Larry Bull, Owen Holland, and Susan Blackmore.
On meme-gene coevolution.
Artificial Life, 6:227-35, 2000.
[bullock01] Seth Bullock.
Smooth operator? Understanding and visualizing mutation bias.
In J. Kelemen and P. Sosík, editors, Advances in Artificial Life : 6th European Conference, ECAL 2001, Prague, Czech Republic, September 10-14, 2001, Proceedings, pages 602-12, Heidelburg, 2001. Springer-Verlag.
http://citeseer.nj.nec.com/446093.html.
[bullock99] Seth Bullock.
Are artificial mutation biases unnatural?
In D. Floreano, J.-D. Nicoud, and F Mondada, editors, Advances in Artificial Life - Fifth European Conference, pages 64-73. Springer-Verlag, 1999.
http://citeseer.nj.nec.com/264112.html.
[bundschuh96] R. Bundschuh, M. Lässig, and followed by H. Flyvbjerg.
Comment on "simplest possible self-organized critical system" and reply.
Phys. Rev. Lett., 77(20):4273-4, 1996.
[busshaus99] Christian Busshaus and Heiko Rieger.
A prognosis oriented microscopic stock market model.
Physica A, 267:443-52, 1999.
arXiv:cond-mat/9903079.
[caccia97] David C. Caccia, Donald Percival, Michael J. Cannon, Gary Raymond, and James B. Bassingthwaighte.
Analyzing exact fractal time series: Evaluating dispersional analysis and rescaled range analysis.
Physica A, 246:609-632, 1997.
[caldarelli02] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Muñoz.
Scale-free networks without growth and preferential attachment: Good get richer.
arXiv:cond-mat/0207366, 2002.
[caldarelli03] Guido Caldarelli, Cécile Caretta Cartozo, Paolo De Los Rios, and Vito D. P. Servedio.
On the widespread occurrence of the inverse square distribution in social sciences and taxonomy.
arXiv:cond-mat/0311486, 2003.
[caldarelli97] G. Caldarelli, M. Marsili, and Y.-C. Zhang.
A prototype model of stock exchange.
Europhys. Lett., 40:479-84, 1997.
arXiv:cond-mat/9709118.
[caldarelli98] Guido Caldarelli, Paul G. Higgs, and Alan J. McKane.
Modelling coevolution in multispecies communities.
J. theor. Biol., 193:345-58, January 1998.
arXiv:adap-org/9801003 v2.
[calvet99] Laurent Calvet and Adlai Fisher.
Forecasting multifractal volatility.
1999.
[cannon97] Michael J. Cannon, Donald B. Percival, David C. Caccia, Gary M. Raymond, and James B. Bassingthwaighte.
Evaluating scaled window variance methods for estimating the Hurst coefficient of time series.
Physica A, 241:606-26, 1997.
[cao95] Zhen Cao and Rudolph C. Hwa.
Phase transitions in evolutionary games.
arXiv:nucl-th/9509041, 1995.
[capocci99] Andrea Capocci and Yi-Cheng Zhang.
Driving force in investment.
arXiv:cond-mat/9912330, 1999.
[cardy80] J. L. Cardy and R. L. Sugar.
Directed percolation and reggeon field theory.
J. Phys. A: Math. Gen., 13:L423-7, 1980.
[carmona98] Philippe Carmona and Laure Coutin.
Fractional Brownian motion and the Markov property.
arXiv:math.PR/9809123, 1998.
[casdagli91] M. Casdagli.
Chaos and deterministic versus stochastic non-linear modelling.
J. R. Statist. Soc. B, 54:303-28, 1991.
[cavagna00] Andrea Cavagna and Robert Savit.
Comment on "adaptive competition, market efficiency, and phase transitions" and reply.
Phys. Rev. Lett., 84:1058-9, 2000.
[chabanol97] M.-L. Chabanol and V. Hakim.
Analysis of a dissipative model of self-organized criticality with random neighbors.
Phys. Rev. E, 56:R2343-6, 1997.
[challet03] Damien Challet and Yann Le Du.
Closed source versus open source in a model of software bug dynamics.
arXiv:cond-mat/0306511, 2003.
[challet97] D. Challet and Y-C. Zhang.
Emergence of cooperation and organization in an evolutionary game.
arXiv:adap-org/9708006, 1997.
[chambers76] J. M. Chambers, C. L. Mallows, and B. W. Stuck.
A method for simulating stable random variables.
Journal of the American Statistical Association, 71:340-4, 1976.
[chang99] Iksoo Chang and Dietrich Stauffer.
Fundamental judgement in Cont-Bouchaud herding model of market fluctuations.
Physica A, 264:294-8, 1999.
[charnov76] E. L. Charnov.
Optimal foraging, the marginal value theorem.
Theor. Pop. Bio., 9:129-36, 1976.
[chate89] H. Chaté and P. Manneville.
Role of defects in the transition to turbulence via spatiotemporal intermittency.
Physica D, 37:33-41, 1989.
[chate90] H. Chaté and P. Manneville.
Criticality in cellular automata.
Physica D, 45:122-35, 1990.
[chate91] H. Chaté and P. Manneville.
Evidence of collective behaviour in cellular automata.
Europhys. Lett., 14:409-13, 1991.
[chen00] Kan Chen and Per Bak.
Scale-dependent dimension in the forest fire model.
Phys. Rev. E, 62:1613-6, 2000.
arXiv:cond-mat/9912417.
[chen97] Yanqing Chen, Mingzhou Ding, and J. A. Scott Kelso.
Long memory processes (1/falpha type) in human coordination.
Phys. Rev. Lett., 79:4501-4504, 1997.
[chen98] S. H. Chen, T. Lux, and M. Marchesi.
Testing for non-linear structure in an artificial financial market.
http://www.ge.infm.it/econophysics/papers/lux/nonlin.zip, 1998.
[cheng98] Ming-Yen Cheng and Peter Hall.
Calibrating the excess mass and dip tests of modality.
J. R. Statist. Soc. B, 60:579-89, 1998.
Available from http://www.math.ntu.edu.tw/cheng/statistics/people/edit_cheng/calibrating.pdf.
[chowdhury00] Debashish Chowdhury, Ludger Santen, and Andreas Schadschneider.
Statistical physics of vehicular traffic and some related systems.
Physics Reports, 329:199-329, 2000.
[chowdhury02] Debashish Chowdhury and Dietrich Stauffer.
Sole-Manrubia model of biological evolution: some new insights.
arXiv:cond-mat/0207532, 2002.
[chowdhury98] Debashish Chowdhury and Dietrich Stauffer.
A generalized spin model of financial markets.
arXiv:cond-mat/9810162, 1998.
[chowdhury99] Debashish Chowdhury and Dietrich Stauffer.
A generalized spin model of financial markets.
Eur. Phys. J. B, 8:477-82, 1999.
arXiv:cond-mat/9810162.
[christensen93] Kim Christensen, Henrik Flyvbjerg, and Zeev Olami.
Self-organized critical forest fire model: Mean-field theory and simulation results in 1 to 6 dimensions.
Phys. Rev. Lett., 71:2737-40, 1993.
[cizeau97] Pierre Cizeau, Yanhui Liu, Martin Meyer, C.-K. Peng, and H. Eugene Stanley.
Volatility distribution in the S&P500 stock index.
Physica A, 245:441-5, 1997.
[clar95] S. Clar, B. Drossel, and F. Schwabl.
Self-organized critical and synchronized states in a nonequilibrium percolation model.
Phys. Rev. Lett., 75(14):2722-5, 1995.
[clar97] S. Clar, K. Schenk, and F. Schwabl.
Phase transitions in a forest-fire model.
Phys. Rev. E, 55:2174-83, 1997.
[clark73] Peter K. Clark.
A subordinated stochastic process model with finite variance for speculative prices.
Econometrica, 41:135-55, 1973.
[clements99] Casey Sneddon Clements.
A double auction market model on an open order book.
B.Sc. thesis, U.B.C., 1999.
[comins92] H. N. Comins, M. P. Hassell, and R. M. May.
The spatial dynamics of host-parasitoid systems.
J. Animal Ecology, 61:735-48, 1992.
[cont00] Rama Cont and Jean-Phillipe Bouchaud.
Herd Behavior and aggregate fluctuations in financial markets.
Macroeconomic Dynamics, 4:170-96, 2000.
arXiv:cond-mat/9712318.
[cont97] R. Cont and J.-P. Bouchaud.
Herd behavior and aggregate fluctuations in financial markets.
arXiv:cond-mat/9712318, December 1997.
[cont97b] Rama Cont, Marc Potters, and Jean-Philippe Bouchaud.
Scaling in stock market data: Stable laws and beyond.
arXiv:cond-mat/9705087, 1997.
[costa97] U. M. S. Costa, M. L. Lyra, A. R. Plastino, and C. Tsallis.
Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and nonextensivity.
Phys. Rev. E, 56:245-50, 1997.
[cover91] Thomas M. Cover and Joy A. Thomas.
Elements of Information Theory.
John Wiley and Sons, New York, 1991.
[creutz96] M. Creutz.
Cellular automata and self organized criticality.
arXiv:hep-lat/9611017, November 1996.
[dammer03] Stephan M. Dammer and Haye Hinrichsen.
Epidemic spreading with immunization and mutations.
arXiv:cond.mat/0303467, 2003.
[danielson97] Peter Danielson.
How to evolve irrational preferences.
Discussion paper for the colloquium on Philosophical Perspectives on Irrationality, University of Montreal, 10-12 Oct. 1997. Available from http://www.ethics.ubc.ca/pad, 1997.
[danielson98] Peter Danielson.
Critical notice of Brian Skyrms' Evolution of the Social Contract.
Canadian Journal of Philosophy, 28:627-652, 1998.
[davidsen01] Jörn Davidsen, Holger Ebel, and Stefan Bornholdt.
Emergence of a small world from local interactions: Modeling acquaintance networks.
arXiv:cond-mat/0108302, 2001.
[dawkins89] Richard Dawkins.
The Selfish Gene.
Oxford University Press, Oxford, New York, 1989.
[deoliveira01] Paulo Murilo Castro de Oliveira.
Why do evolutionary systems stick to the edge of chaos.
Theory in Biosciences, 120, 2001.
expanded version available at arXiv:cond-mat/0101170.
[derrida92] B. Derrida, E. Domany, and D. Mukamel.
An exact solution of a one dimensional asymmetric exclusion model with open boundaries.
J. Stat. Phys., 69:667-87, 1992.
[deutscher83] G. Deutscher, R. Zallen, and Joan Adler, editors.
Percolation Structures and Processes.
Adam Hilger and The Israel Physical Society, 1983.
[dhulst99] R. D'Hulst and G. J. Rodgers.
Exact solution of a model for crowding and information transmission in financial markets.
arXiv:cond-mat/9908481, 1999.
[dhulst99b] R. D'Hulst and G. J. Rodgers.
Democracy versus dictatorship in self-organized models of financial markets.
arXiv:adap-org/9912003, 1999.
[dickman95] R. Dickman and A. Y. Tretyakov.
Hyperscaling in the domany-kinzel cellular automaton.
Phys. Rev. E, 52:3218-20, 1995.
[dickman96] R. Dickman.
Nonuniversal critical spreading in two dimensions.
Phys. Rev. E, 53:2223-30, 1996.
[dickman98] Ronald Dickman, Alessandro Vespignani, and Stefano Apperi.
Self-organized criticality as an absorbing-state phase transition.
Phys. Rev. E, 57:5095-105, 1998.
[dieckmann99] Ulf Dieckmann and Michael Doebeli.
On the origin of species by sympatric speciation.
Nature, 400:354-7, 1999.
Available from http://www.math.ubc.ca/%7Edoebeli/reprints/Doe35.pdf.
[dilao00] Rui Dilão and Tiago Domingos.
A general approach to the modelling of trophic chains.
Ecological Modelling, 132:191-202, 2000.
[dimitrova05] Elena S. Dimitrova, John J. McGee, and Reinhard C. Laubenbacher.
Discretization of time series data.
arXiv:q-bio.OT/0505028, 2005.
[doebeli03] Michael Doebeli and Ulf Dieckmann.
Speciation along environmental gradients.
Nature, 421:259-64, 2003.
Available from http://www.math.ubc.ca/%7Edoebeli/reprints/Doe45.pdf.
[doebeli03b] Michael Doebeli and Timothy Killingback.
Metapopulation dynamics with quasi-local competition.
Theor. Pop. Biol., 64:397-416, 2003.
http://www.math.ubc.ca/~doebeli/reprints/Doe46.pdf.
[doebeli07] Michael Doebeli, Hendrik J. Blok, Olof Leimar, and Ulf Dieckmann.
Multimodal pattern formation in phenotype distributions of sexual populations.
Proc. R. Soc. B, 274:347-57, 2007.
Available from http://www.zoology.ubc.ca/~rikblok/lib/doebeli07.html.
[doebeli97] Michael Doebeli and Graeme D. Ruxton.
Evolution of dispersal rates in metapopulation models: Branching and cyclic dynamics in phenotype space.
Evolution, 51:1730-41, 1997.
[domany84] E. Domany and W. Kinzel.
Equivalence of cellular automata to ising models and directed percolation.
Phys. Rev. Lett., 53:311-4, 1984.
[doran98] Jim Doran.
Simulating collective misbelief.
J. Artificial Soc. and Social Sim., 1(1), 1998.
http://www.soc.surrey.ac.uk/JASSS/1/1/3.html.
[dragulesca00] Adrian Dragulesca and Victor M. Yakovenko.
Evidence for the exponential distribution of income in usa.
cond-mat/0008305, 2000.
[drossel94] B. Drossel, S. Clar, and F. Schwabl.
Crossover from percolation to self-organized criticality.
Phys. Rev. E, 50:R2399-402, 1994.
[dutton71] John M. Dutton and William H. Starbuck, editors.
Computer simulation of human behavior, New York, 1971. Wiley.
[duty00] Timothy Lee Duty.
Broken symmetry and critical phenomena in population genetics: The stepping-stone model.
PhD thesis, University of British Columbia, 2000.
[economagic99] Dow Jones Industral Average: Daily close, 1896-1999.
Available from http://www.economagic.com/em-cgi/data.exe/djind/day-djiac, provided by Economagic.com.
[edelsteinkeshet88] Leah Edelstein-Keshet.
Mathematical Models in Biology.
Random House, New York, 1988.
[egenter99] E. Egenter, T. Lux, and D. Stauffer.
Finite-size effects in Monte Carlo simulations of two stock market models.
Physica A, 268:250-6, 1999.
[eguiluz00] Víctor M. Eguíluz and Martín Zimmermann.
Transmission of information and herd behavior: An application to financial markets.
Phys. Rev. Lett., 85:5659-62, 2000.
[eguiluz99] Víctor M. Eguíluz and Martín G. Zimmermann.
Transmission of information and herd behavior: An application to financial markets.
arXiv:cond-mat/9908069, 1999.
[eisert99] Jens Eisert, Martin Wilkens, and Maciej Lewenstein.
Quantum games and quantum strategies.
Phys. Rev. Lett., 83:3077-3080, 1999.
[eliezer98] David Eliezer and Ian I. Kogan.
Scaling laws for the market microstructure of the interdealer broker markets.
arXiv:cond-mat/9808240, 1998.
[enns00] Richard H. Enns and George C. McGuire.
Nonlinear Physics with Maple for Scientists and Engineers.
Birkhäuser, New York, 2nd edition, 2000.
[epstein96] L. G. Epstein and T. Wang.
"beliefs about beliefs" without probabilities.
Econometrica, 64(6):1343-73, 1996.
[epstein98] Joshua M. Epstein.
Zones of cooperation in demographic prisoner's dilemma.
Complexity, 4(2):36-48, 1998.
[ermentrout93] G. B. Ermentrout and L. Edelstein-Keshet.
Cellular automata approaches to biological modeling.
J. Theor. Biol., 160:97-133, 1993.
[evans95] M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel.
Spontaneous symmetry breaking in a one dimensional driven diffusive system.
Phys. Rev. Lett., 74:208-11, 1995.
[evans95b] M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel.
Asymmetric exclusion model with two species: Spontaneous symmetry breaking.
J. Stat. Phys., 80:69-102, 1995.
[fang95] Haiping Fang and Liangyue Cao.
Predicting and characterizing data sequences from structure-variable systems.
Phys. Rev. E, 51:6254-7, 1995.
[farkas03] I. Farkas, I. Derényi, H. Jeong, Z. Néda, Z. N. Oltvai, E. Ravasz, A. Schubert, A.-L. Barabási, and T. Vicsek.
Networks in life: Scaling properties and eigenvalue spectra.
arXiv:cond-mat/0303106, 2003.
[farmer87] J. Doyne Farmer and J. J. Sidorowich.
Predicting chaotic time series.
Phys. Rev. Lett., 59:845-8, 1987.
[farmer98] J. Doyne Farmer.
Market force, ecology, and evolution.
arXiv:adap-org/9812005, 1998.
[feder88] Jens Feder.
Fractals.
Plenum, New York, 1988.
[feigenbaum95] James A. Feigenbaum and Peter G. O. Freund.
Discrete scaling in stock markets before crashes.
arXiv:cond-mat/9509033, 1995.
[feldman96] Marc W. Feldman and Kevin N. Laland.
Gene-culture coevolutionary theory.
Trends in Ecology and Evolution, 11:453-7, 1996.
[feller50] William Feller.
An Introduction to Probability Theory and its Applications, volume 1.
Wiley, New York, 1950.
[fernandez95] J. Fernandez, A. Plastino, and L. Diambra.
Self-organized criticality in coevolving interacting systems.
Phys. Rev. E, 52:5700-3, 1995.
[fernandez98] J. Fernández, A. Plastino, L. Diambra, and C. Mostaccio.
Dynamics of coevolutive processes.
Phys. Rev. E, 57:5897-903, 1998.
[flood90] Robert P. Flood and Robert J. Hodrick.
On testing for speculative bubbles.
J. Econ. Perspectives, 4:85-101, 1990.
[flyvbjerg92] Henrik Flybjerg and Benny Lautrup.
Evolution in a rugged fitness landscape.
Phys. Rev. A, 46:6714-23, 1992.
[flyvbjerg96] H. Flyvbjerg.
Simplest possible self-organized system.
Phys. Rev. Lett., 76:940-3, 1996.
[fogel98] Gary B. Fogel, Peter C. Andrews, and David B. Fogel.
On the instability of evolutionary stable strategies in small populations.
Ecological Modelling, 109:283-94, 1998.
[fort03] H. Fort.
Cooperation and Self-Regulation in a Model of Agents Playing Different Games.
arXiv:cond-mat/0306578, 2003.
[franci00] Fabio Franci and Lorenzo Matassini.
Life in the stock market - a realistic model for trading.
cond-mat/0008466, 2000.
[frean01] Marcus Frean and Edward R. Abraham.
Rock-scissors-paper and the survival of the weakest.
Proc. R. Soc. Lond. B, 268:1323-7, 2001.
[friedman01] Eric J. Friedman and A. S. Landsberg.
Large-scale synchrony in weakly interacting automata.
arXiv:cond-mat/0102388, 2001.
[friesen04] Maren L. Friesen, Gerda Saxer, Michael Travisano, and Michael Doebeli.
Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli.
Evolution, 58:245-60, 2004.
http://www.math.ubc.ca/~doebeli/reprints/doe49.pdf.
[fuentes03] M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre.
Analytic considerations in the study of spatial patterns arising from non-local interaction effects in population dynamics.
arXiv:nlin.PS/0311017, 2003.
[fuentes03b] M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre.
Non-local interaction effects on pattern formation in population dynamics.
arXiv:nlin.PS/0302043, 2003.
[fukumoto86] I. Fukumoto.
Computer simulation of Parkinsonian tremor.
J. Biomed. Eng., 8:49-55, 1986.
[galmarini03] S. Galmarini, D. G. Steyn, and B. Ainslie.
The scaling law relating world point precipitation records to duration.
2003.
[gammel98] B. M. Gammel.
Hurst's rescaled range statistical analysis for pseudorandom number generators used in physical simulations.
Phys. Rev. E, 58:2586-2597, 1998.
[gardner70] M. Gardner.
The game of life.
Sci. Am., 223:(4) 120-4; (5) 118; (6) 114, 1970.
[garman76] Mark B. Garman.
Market microstructure.
J. Fin. Econ., 3:257-275, 1976.
[gazit95] Y. Gazit, D. A. Berk, M. Leunig, L. T. Baxter, and R. K. Jain.
Scale-invariant behavior and vascular network formation in normal and tumor tissue.
Phys. Rev. Lett., 75:2428-31, 1995.
[gazzaniga98] Michael S. Gazzaniga.
The split brain revisited.
Sci. Am., (7):51-5, July 1998.
[glance93] N. S. Glance and B. A. Huberman.
Organizational fluidity and sustainable cooperation.
to appear in Computational Organization Theory, 1993.
[glance94] N. S. Glance, T. Hogg, and B. A. Huberman.
Training and turnover in organizations.
to be presented at the AAAI Spring Symposium on "Computational Organization Design", 1994.
[glance94b] N. S. Glance and B. A. Huberman.
The dynamics of social dilemmas.
Sci. Am., 270(3):76-81, 1994.
[glance95] N. S. Glance and T. Hogg.
Computational social dilemmas.
ftp://parcftp.xerox.com/pub/dynamics/computationalSocialDilemmaAIJ.ps, 1995.
[global99] Gold-silver price ratios, 1257-1999.
Available from http://www.globalfindata.com/freecom.htm, provided by Global Financial Data.
[glosli83] J. Glosli and M. Plischke.
A monte carlo and renormalization group study of the ising model with nearest and next nearest neighbor interactions on the triangular lattice.
Can. J. Phys., 61:1515-27, 1983.
[gneiting01] Tilmann Gneiting and Martin Schlather.
Stochastic models that separate fractal dimension and Hurst effect.
arXiv:physics/0109031, 2001.
[goeree01] Jacob K. Goeree and Charles A. Holt.
Ten little treasures of game theory and ten intuitive contradictions.
The American Economic Review, 91:1402-22, 2001.
[goldenfeld92] N. Goldenfeld.
Lectures on Phase Transitions and the Renormalization Group.
Addison-Wesley, 1992.
[gopikrishnan98] P. Gopikrishnan, M. Meyer, L. A. N. Amaral, and H. E. Stanley.
Inverse cubic law for the distribution of stock price variations.
Eur. Phys. J. B, 3:139-40, 1998.
[gopikrishnan99] Parameswaran Gopikrishnan, Vasiliki Plerou, Luís A. Nunes Amaral, Martin Meyer, and H. Eugene Stanley.
Scaling of the distribution of fluctuations of financial market indices.
Phys. Rev. E, 60:5305-16, 1999.
arXiv:cond-mat/9905305.
[grassberger79] P. Grassberger and A. de la Torre.
Reggeon field theory (schlögl's first model) on a lattice: Monte carlo calculations of critical behaviour.
Annals of Phys., 122:373-96, 1979.
[grassberger89] P. Grassberger.
Directed percolation in 2+1 dimensions.
J. Phys. A: Math. Gen., 22:3673-9, 1989.
[grassberger95] Peter Grassberger.
Are damage spreading transitions generically in the universality class of directed percolation?
J. Stat. Phys., 79:13-23, 1995.
[grassberger96] P. Grassberger and Y.-C. Zhang.
"self-organized" formulation of standard percolation phenomena.
Physica A, 224:169-79, 1996.
[grim96] Patrick Grim.
Spatialization and greater generosity in the stochastic Prisoner's Dilemma.
BioSystems, 37:3-17, 1996.
[grinstein89] G. Grinstein, Z.-W. Lai, and D. A. Browne.
Critical phenomena in a nonequilibrium model of heterogenous catalysis.
Phys. Rev. A, 40:4820-3, 1989.
[groleau97] Daniel Groleau.
Study of the Scaling and Temporal Properties of a Simplified Earthquake Model.
PhD thesis, University of British Columbia, 1997.
[grossman76] S. Grossman.
On the efficiency of competitive stock markets where trades have diverse information.
J. Finance, 31:573-85, 1976.
[guenther97] O. Guenther, T. Hogg, and B. A. Huberman.
Power markets for controlling smart matter.
arXiv:cond-mat/9703078, March 1997.
[gupta99] Hari M. Gupta and José R. Campanha.
The gradually truncated Lévy flight for systems with power law distributions.
Physica A, 268:231-239, 1999.
[haken78] Hermann Haken.
Synergetics: An Introduction.
Springer-Verlag, Berlin, 1978.
[haken96] Hermann Haken.
Slaving principle revisited.
Physica D, 97:95-103, 1996.
[halpinhealy95] Timothy Halpin-Healy and Yi-Cheng Zhang.
Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics.
Physics Reports, 254:215-414, 1995.
[happel98] Robert Happel and Peter F. Stadler.
The evolution of diversity in replicator networks.
J. Theor. Biol., 195:329-38, 1998.
[hartigan85] J. A. Hartigan and P. M. Hartigan.
The Dip test of unimodality.
The Annals of Statistics, 13:70-84, 1985.
[hayes97] Brian Hayes.
Cant' get no satisfaction.
American Scientist, 85:108-12, 1997.
http://www.sigmaxi.org/amsci/issues/Comsci97/compsci9703.html.
[heckathorn96] Douglas D. Heckathorn.
The dynamics and dilemmas of collective action.
American Sociological Review, 61:251-77, 1996.
[hemmingsson95] J. Hemmingsson.
Consistent results on `life'.
Physica D, 80:151-3, 1995.
[henrich01] Joseph Henrich and Robert Boyd.
Why people punish defectors: Weak conformist transmission can stabilize costly enforcement of norms in cooperative dilemmas.
J. Theor. Biol., 208:79-89, 2001.
[hiebeler97] David Hiebeler.
Stochastic spatial models: From simulations to mean field and local structure approximations.
J. Theor. Biol., 187:307-19, 1997.
[hogg95] T. Hogg, B. A. Huberman, and M. Youssefmir.
The instability of markets.
ftp://parcftp.xerox.com/pub/dynamics/bubbles.ps, 1995.
[holme01] Petter Holme and Beom Jun Kim.
Growing scale-free networks with tunable clustering.
arXiv:cond-mat/0110452, 2001.
[hsieh91] D. A. Hsieh.
Chaos and nonlinear dynamics: Application to financial markets.
J. Finance, 46:1839-77, 1991.
[huberman93] B. A. Huberman and N. S. Glance.
Evolutionary games and computer simulations.
Proc. Natl. Acad. Sci. USA, 90:7716-8, 1993.
[huberman93b] B. A. Huberman.
Social intermittency.
1993.
[huberman93c] B. A. Huberman and N. S. Glance.
Diversity and Collective Action, volume 62 of Springer Series in Synergetics, pages 44-64.
Springer-Verlag, 1993.
[huberman99] Bernardo A. Huberman and Lada A. Adamic.
Growth dynamics of the world-wide web.
Nature, 401:131, 1999.
[hurst51] H. E. Hurst.
Long-term storage capacity of reservoirs.
Trans. Am. Soc. Civ. Eng., 116:770-808, 1951.
[hwa89] T. Hwa and M. Kardar.
Dissipative transport in open systems: An investigation of self-organized criticality.
Phys. Rev. Lett., 62:1813-6, 1989.
[ifti03] Margarita Ifti and Birger Bergersen.
Crossover behaviour of 3-species systems with mutations or migrations.
arXiv:nlin.AO/0307006, 2003.
[ifti03b] Margarita Ifti.
Scaling, survival, and extinction in many-species systems.
PhD thesis, University of British Columbia, 2003.
[ifti03c] Margarita Ifti and Birger Bergersen.
Survival and extinction in cyclic and neutral three-species systems.
Eur. Phys. J. E, 10:241-8, 2003.
arXiv:nlin.AO/0208023.
[ingerson84] T. E. Ingerson and R. L. Buvel.
Structure in asynchronous cellular automata.
Physica D, 10:59-68, 1984.
[iori99] Giulia Iori.
A microsimulation of traders activity in the stock market: The role of heterogeneity, agents' interactions and trade frictions.
arXiv:adap-org/9905005, 1999.
[ispolatov96] I. Ispolatov, P. L. Krapivsky, and S. Redner.
War: The dynamics of vicious civilizations.
Phys. Rev. E, 54:1274-89, 1996.
[israeli03] Navot Israeli and Nigel Goldenfeld.
On computational irreducibility and the predictability of complex physical systems.
arXiv:nlin.CG/0309047, 2003.
[ito92] K. Ito and Y.-P. Gunji.
Self-organization toward criticality in the game of life.
Biosystems, 26:135-8, 1992.
[ivashkevich96] E. V. Ivashkevich.
Critical behavior of the sandpile model as a self-organized branching process.
Phys. Rev. Lett., 76:3368-71, 1996.
[ivashkevich99] Eugene Ivashkevich, Alexander Povolotsky, Alessandro Vespignani, and Stefano Zapperi.
Dynamically driven renormalization group applied to sandpile models.
Phys. Rev. E, 60:1239, 1999.
arXiv:cond-mat/9802205.
[jaeger92] H. M. Jaeger and S. R. Nagel.
Physics of the granular state.
Science, 255:1523-31, 1992.
[jain01] Sanjay Jain and Sandeep Krishna.
A model for the emergence of cooperation, interdependence, and structure in evolving networks.
Proc. Nat. Acad. Sci. USA, 98:543-7, 2001.
arXiv:nlin.AO/0005039.
[jain01b] Sanjay Jain and Sandeep Krishna.
Crashes, recoveries, and `core-shifts' in a model of evolving networks.
arXiv:nlin.AO/0107037, 2001.
[janosi93] I. M. Jánosi and J. Kertész.
Self-organized criticality with and without conservation.
Physica A, 200:179-88, 1993.
[janssen81] H. K. Janssen.
On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state.
Z. Phys. B - Condensed Matter, 42:151-4, 1981.
[jaynes96] Edwin T. Jaynes.
Probability theory: The logic of science.
http://bayes.wustl.edu/etj/prob.html, or http://omega.albany.edu:8008/JaynesBook.html or http://www.stat.washington.edu/hoff/courses/stat564-2001/JaynesBook/, 1996.
[jensen93] I. Jensen and R. Dickman.
Nonequilibrium phase transitions in systems with infinitely many absorbing states.
Phys. Rev. E, 48:1710-25, 1993.
[johansen00] Anders Johansen and Didier Sornette.
The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash.
arXiv:cond-mat/0004263, 2000.
[johansen96] Anders Johansen, Didier Sornette, Hiroshi Wakita, Urumu Tsunogai, William L. Newman, and Hubert Saleur.
Discrete scaling in earthquake precursory phenomena: Evidence in the kobe earthquake, japan.
J. Phys. I France, 6:1391-402, 1996.
[johansen99] Anders Johansen, Didier Sornette, and Olivier Ledoit.
Predicting financtial crashes using discrete scale invariance.
J. Risk, 1(4):5-32, 1999.
arXiv:cond-mat/9903321.
[johnson01] Neil F. Johnson, David Lamper, Paul Jeffries, Michael L. Hart, and Sam Howison.
Application of multi-agent games to the prediction of financial time-series.
arXiv:cond-mat/0105303, 2001.
[johnson37] N. O. Johnson.
The pareto law.
Rev. Econ. Stat., 19:20-6, 1937.
[johnson98] N. F. Johnson, S. Jarvis, R. Jonson, P. Cheung, Y. R. Kwong, and P. M. Hui.
Volatility and agent adaptibility in a self-organizing market.
arXiv:cond-mat/9802177, 1998.
[johnson98b] N. F. Johnson, P. M. Hui, R. Jonson, and T. S. Lo.
Self-organized segregation within an evolving population.
arXiv:cond-mat/9810142, 1998.
[jones05] Benjamin F. Jones.
Age and great invention.
http://papers.nber.org/papers/w11359.pdf, 2005.
[jovanovic94] B. Jovanovic, S. V. Buldyrev, S. Havlin, and H. E. Stanley.
Punctuated equilibrium and "history-dependent" percolation.
Phys. Rev. E, 50:R2403-6, 1994.
[kacperski96] K. Kacperski and J. A. Holyst.
Phase transitions and hysteresis in a cellular automata-based model of opinion formation.
J. Stat. Phys., 84:169-89, 1996.
[kaneko01] Kunihiko Kaneko and Tetsuya Yomo.
Origin of genetic information from minority control in a replicating system with mutually catalytic molecules.
arXiv:nlin.AO/0105031, 2001.
[kauffman86] S. A. Kauffman and R. G. Smith.
Adaptive automata based on darwinian selection.
Physica D, 22:68-82, 1986.
[kauffman91] S. A. Kauffman.
Antichaos and adaption.
Sci. Am., 265(2):78-84, 1991.
[kauffman95] Stuart Kauffman.
At Home in the Universe: The Search for the Laws of Self-Organization and Complexity.
Oxford University Press, Oxford, 1995.
[kelly56] J. L. Kelly.
A new interpretation of information rate.
Bell Syst. Tech. J., 35:917-26, 1956.
http://www.bjmath.com/bjmath/kelly/kelly.pdf.
[kerr02] Benjamin Kerr, Margaret A. Riley, Marcus W. Feldman, and Brendan J. M. Bohannan.
Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors.
Nature, 418:171-4, 2002.
[killingback06] Timothy Killingback, Hendrik J. Blok, and Michael Doebeli.
Scale-free extinction dynamics in spatially structured host-parasitoid systems.
J. Theor. Biol., 241:745-50, 2006.
Available from http://www.zoology.ubc.ca/~rikblok/lib/killingback06.html.
[kinouchi01] Osame Kinouchi.
Persistence solves Fermi Paradox but challenges SETI projects.
arXiv:cond-mat/0112137, 2001.
[kirchner98] James W. Kirchner and Anne Weil.
No fractals in fossil extinction statistics, volume 395, pages 337-8.
1998.
Available from http://www.seismo.berkeley.edu/~kirchner/reprints/1998_28_no_fractals_in_fossils.pdf.
[kogon96] Stephen M. Kogon and Dimitris G. Manolakis.
Signal modeling with self-similar alpha-stable processes: The fractional Lévy stable motion model.
IEEE Trans. on Signal Processing, 44:1006-1010, 1996.
[kohl97] R. Kohl.
The influence of the number of different stocks on the Levy-Levy-Solomon model.
Int. J. Mod. Phys. C, 8:1309-1316, 1997.
[koponen95] Ismo Koponen.
Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process.
Phys. Rev. E, 52:1197-9, 1995.
[korniss03] G. Korniss, M. A. Novotny, H. Guclu, Z. Toroczkai, and P. A. Rikvold.
Suppressing roughness of virtual times in parallel discrete-event simulations.
Science, 299:677-9, 2003.
arXiv:cond-mat/0302050.
[krapivsky01] P. L. Krapivsky and S. Redner.
Organization of growing random networks.
Phys. Rev. E, 63:066123, 2001.
[kraus98] Alan Kraus and Maxwell Smith.
Endogenous sunspots, pseudo-bubbles, and beliefs about beliefs.
Journal of Financial Markets, 1:151-74, 1998.
http://www.elsevier.nl/cgi-bin/cas/tree/store/finmar/cas_sub/browse/browse.cgi?year=1998&volume=1&issue=2&aid=5.
[kruse91] R. L. Kruse, B. P. Leung, and C. L. Tondo.
Data Structures and Program Design in C.
Prentice Hall, New Jersey, 1991.
[laland95] Kevin N. Laland, Jochen Kumm, and Marcus W. Feldman.
Gene-culture coevolutionary theory: A test case.
Current Anthropology, 36:131-56, 1995.
[laloux98] Laurent Laloux, Marc Potters, Rama Cont, Jean-Pierre Aguilar, and Jean-Philippe Bouchaud.
Are financial crashes predictable?
arXiv:cond-mat/9804111, 1998.
[laloux99] Laurent Laloux, Piere Cizeau, Jean-Philippe Bouchaud, and Marc Potters.
Noise dressing of financial correlation matrices.
Phys. Rev. Lett., 83:1467-1470, 1999.
[lamper01] D. Lamper and S. Howison.
Predicatbility of large future changes in a competitive evolving population.
arXiv:cond-mat/0105258, 2001.
[langton90] C. G. Langton.
Computation at the edge of chaos: Phase transitions and emergent computation.
Physica D, 42:12-37, 1990.
[langton91] C. G. Langton.
Life at the edge of chaos.
In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, pages 41-91. Addison-Wesley, 1991.
[lasdon78] L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner.
Design and testing of a generalized reduced gradient code for nonlinear programming.
ACM Trans. on Math. Software, 4:34-50, 1978.
[law00] Richard Law and Ulf Dieckmann.
A dynamical system for neighborhoods in plant communities.
Ecology, 81:2137-48, 2000.
[lawrence77] J. V. Lawrence and S. Maier.
Correction for the inherent error in optical density readings.
Applied and Environmental Microbiology, 33:482-4, 1977.
[lawson00] Barry G. Lawson and Steve Park.
Asynchronous time evolution in an artificial society model.
J. Artificial Soc. and Social Sim., 3(1), 2000.
http://www.soc.surrey.ac.uk/JASSS/3/1/2.html.
[lebaron88] New York Stock Exchange daily returns and volume, 1962-1988.
Available from http://www.stern.nyu.edu/~aweigend/Time-Series/Data/NYSE.Date.Day.Return.Volume.Vola, provided by Blake LeBaron.
[lebaron99] Blake LeBaron.
Volatility persistence and apparent scaling laws in finance.
http://stanley.feldberg.brandeis.edu/~blebaron, 1999.
[lecuyer99] Pierre L'ecuyer.
Tables of linear congruential generators of different sizes and good lattice structure.
Math. of Comput., 68(225):249-260, 1999.
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/latrules.ps.
[lee02] Chiu Fan Lee and Neil F. Johnson.
Interacting many-body systems as non-cooperative games.
arXiv:cond-mat/0212505, 2002.
[lee03] Jia Lee, Susumu Adachi, Ferdinand Peper, and Kenichi Morita.
Asynchronous Game of Life.
submitted to Physica D, 2003.
[levy95] M. Levy, H. Levy, and S. Solomon.
Microscopic simulation of the stock market: The effect of microscopic diversity.
J. Phys. I France, 5:1087-107, 1995.
[li90] W. Li, N. H. Packard, and C. G. Langton.
Transition phenomena in cellular automata rule space.
Physica D, 45:77-94, 1990.
[liebovitch97] Larry S. Liebovitch and Weiming Yang.
Transition from persistent to antipersistent correlation in biological systems.
Phys. Rev. E, 56:4557-4566, 1997.
[lim99] Y. F. Lim, Kan Chen, and C. Jayaprakash.
Self-organized criticality in a spatial game of Prisoners' Dilemma.
1999.
[lindgren91] Kristian Lindgren.
Evolutionary phenomena in simple dynamics.
In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, pages 295-312. Addison-Wesley, 1991.
[liu97] Yanhui Liu, Pierre Cizeau, Martin Meyer, C.-K. Peng, and H. Eugene Stanley.
Correlations in economic time series.
Physica A, 245:437-40, 1997.
[lo88] Andrew W. Lo and A. Craig MacKinlay.
Stock market prices do not follow random walks: Evidence from a simple specification test.
Review of Financial Studies, 1:41-66, 1988.
[lo91] Andrew W. Lo.
Long-term memory in stock market prices.
Econometrica, 59:1279-1313, 1991.
[loreto96] Vittorio Loreto, Alessandro Vespignani, and Stefano Zapperi.
Renormalization scheme for forest-fire models.
J. Phys. A: Math. Gen., 29:2981-3004, 1996.
[lubachevsky00] Boris D. Lubachevsky.
Fast simulation of multicomponent dynamic systems.
Bell Labs Technical Journal, 5:134-56, 2000.
arXiv:cs.DS/0405077.
[lumer94] E. D. Lumer and G. Nicolis.
Synchronous versus asynchronous dynamics in spatially distributed systems.
Physica D, 71:440-52, 1994.
[lumsden81] Charles J. Lumsden and Edward O. Wilson.
Genes, Mind, and Culture.
Harvard University Press, Cambridge, MA, 1981.
[lux99] Thomas Lux and Michele Marchesi.
Scaling and criticality in a stochastic multi-agent model of a financial market.
Nature, 397:498-500, 1999.
http://www.ge.infm.it/econophysics/papers/lux/lux-marchesi.ps.gz.
[mainardi00] Francesco Mainardi, Marco Raberto, Rudolf Gorenflo, and Enrico Scalas.
Fractional calculus and continuous-time finance II: The waiting-time distribution.
Physica A, 287:468-81, 2000.
arXiv:cond-mat/0006454.
[makse95] H. A. Makse, S. Havlin, and H. E. Stanley.
Modelling urban growth patterns.
Nature, 377:608-12, 1995.
[mandelbrot63] B. B. Mandelbrot.
The variation of certain speculative prices.
J. Business, 36:394-419, 1963.
[mandelbrot68] Benoit B. Mandelbrot and John W. Van Ness.
Fractional Brownian motions, fractional noises and applications.
SIAM Review, 10:422-37, 1968.
[mandelbrot71] Benoit B. Mandelbrot.
A fast fractional Gaussian noise generator.
Water Resources Research, 7:543-53, 1971.
[mandelbrot83] B. Mandelbrot.
The Fractal Geometry of Nature.
Freeman, 1983.
[mandelbrot97] Benoit B. Mandelbrot.
Fractals and Scaling in Finance: Discontinuity, Concentration, Risk.
Springer-Verlag, New York, 1997.
[mandelbrot97b] Benoit Mandelbrot, Adlai Fisher, and Laurent Calvet.
A multifractal model of asset returns.
Cowles Foundation Discussion Paper #1164, available from http://www.econ.yale.edu/~fisher/papers.html, 1997.
[mannella94] Riccardo Mannella, Paolo Grigolini, and Bruce J. West.
A dynamical approach to fractional brownian motion.
Fractals, 2:81, 1994.
arXiv:chao-dyn/9308004.
[manrubia01] Susanna C. Manrubia, Jordi Delgado, and Bartolo Luque.
Small-world behavior in a system of mobile elements.
arXiv:cond-mat/0102069, 2001.
[manrubia98] Susanna C. Manrubia and Damián H. Zanette.
Intermittency model for urban development.
Phys. Rev. E, 58:295-302, 1998.
[mantegna94] Rosario N. Mantegna and H. Eugene Stanley.
Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight.
Phys. Rev. Lett., 73:2946-9, 1994.
[mantegna95] Rosario N. Mantegna and H. Eugene Stanley.
Scaling behaviour in the dynamics of an economic index.
Nature, 376:46-9, 1995.
[mantegna98] Rosario N. Mantegna and H. Eugene Stanley.
Modeling of financial data: Comparison of the truncated Lévy flight and the ARCH(1) and GARCH(1,1) processes.
Physica A, 254:77-84, 1998.
arXiv:cond-mat/9804126.
[mantegna99] Rosario N. Mantegna, Zoltán Palágyi, and H. Eugene Stanley.
Applications of statistical mechanics to finance.
Physica A, 274:216-221, 1999.
[marsili98] M. Marsili, S. Maslov, and Y.-C. Zhang.
Dynamical optimization theory of a diversified portfolio.
Math. and Theor. Methods in Physics, 7:403, 1998.
arXiv:cond-mat/9801239.
[marsili98b] Matteo Marsili and Yi-Cheng Zhang.
Interacting individuals leading to zipf's law.
Phys. Rev. Lett., 80:2741-4, 1998.
[marsili98c] Matteo Marsili and Yi-Cheng Zhang.
Stochastic dynamics in game theory.
arXiv:cond-mat/9801309, 1998.
[maslov94] S. Maslov, M. Pacuski, and P. Bak.
Avalanches and 1/f noise in evolution and growth models.
Phys. Rev. Lett., 73:2162-5, 1994.
[maslov98] S. Maslov and Y.-C. Zhang.
Optimal investment strategy for risky assets.
Int. J. Theor. and Applied Finance, 1(3):377, 1998.
arXiv:cond-mat/9801240.
[maslov98b] Sergei Maslov and Yi-Cheng Zhang.
Probability distribution of drawdowns in risky investments.
arXiv:cond-mat/9808295, 1998.
[maslov99] Sergei Maslov and Yi-Cheng Zhang.
Probability distribution of drawdowns in risky investments.
Physica A, 262:232-41, 1999.
arXiv:cond-mat/9808295.
[matsumoto98] Makoto Matsumoto and Takuji Nishimura.
Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator.
ACM Transactions on Modeling and Computer Simulations, 8:3-30, 1998.
http://www.math.keio.ac.jp/~nisimura/random/doc/mt.ps.
[maurer00] Sebastion M. Maurer and Bernardo A. Huberman.
Competitive dynamics of web sites.
arXiv:nlin.CD/0003041, 2000.
[maynardsmith75] John Maynard Smith.
The Theory of Evolution.
Cambridge University Press, Cambridge, 3rd edition, 1975.
[mcintosh90] H. V. McIntosh.
Wolfram's class IV automata and a good life.
Physica D, 45:105-21, 1990.
[mckane05] A. J. McKane and T. J. Newman.
Predator-prey cycles from resonant amplification of demographic stochasticity.
arXiv:q-bio.PE/0501023, 2005.
[mendes94] J. F. F. Mendes, R. Dickman, M. Henkel, and M. C. Marques.
Generalized scaling for models with multiple absorbing states.
J. Phys. A: Math. Gen., 27:3019-28, 1994.
[menyhard88] N. Menyhárd.
Inhomogeneous mean-field approximation for phase transitions in probabilistic cellular automata: An example.
J. Phys. A: Math. Gen., 21:1283-92, 1988.
[merton92] Robert C. Merton.
Continuous-Time Finance.
Blackwell, Cambridge, 1992.
[mesa93] Oscar J. Mesa and German Poveda.
The Hurst effect: The scale of fluctuation approach.
Water Resources Research, 29:3995-4002, 1993.
[meyer99] David A. Meyer.
Quantum strategies.
Phys. Rev. Lett., 82:1052-5, 1999.
[mikheev95] Lev V. Mikheev.
Comment on the black-scholes pricing problem.
J. Phys. I France, 5:217-8, 1995.
[mitchell93] M. Mitchell, P. T. Hraber, and J. P. Crutchfield.
Revisiting the edge of chaos: Evolving cellular automata to perform computations.
submitted to Complex Systems, 1993.
[monetti95] R. A. Monetti and E. V. Albano.
Critical edge between frozen extinction and chaotic life.
Phys. Rev. E, 52:5825-31, 1995.
[monetti97] R. A. Monetti and E. V. Albano.
Stochastic game of life in one dimension.
Physica A, 234:785-91, 1997.
[montroll83] E. W. Montroll and M. F. Shlesinger.
Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails.
J. Stat. Phys., 32(2):209-30, 1983.
[montroll87] Elliott W. Montroll and Bruce J. West.
On an enriched collection of stochastic processes.
In E. W. Montroll and J. L. Lebowitz, editors, Fluctuation Phenomena, pages 61-206. North-Holland, Amsterdam, 1987.
[morris96] S. Morris.
Speculative investor behavior and learning.
Quart. J. Econometrics, pages 1111-33, 1996.
[moukarzel99] Cristian F. Moukarzel.
Spreading and shortest paths in systems with sparse long-range connections.
Phys. Rev. E, 60:R6263-6, 1999.
[mouritsen84] O. G. Mouritsen.
Computer Studies of Phase Transitions and Critical Phenomena.
Springer-Verlag, Berlin, Heidelberg, 1984.
[mukherji96] Arijit Mukherji, Vijay Rajan, James R. Slagle, Followed by Martin A. Nowak, Sebastion Bonhoeffer, and Robert M. May.
Robustness of cooperation (and Reply).
Nature, 379:125-6, 1996.
[munoz96] M. A. Muñoz, G. Grinstein, R. Dickman, and R. Livi.
Critical behavior of systems with many absorbing states.
Phys. Rev. Lett., 76:451-4, 1996.
[munoz97] M. A. Muñoz, G. Grinstein, R. Dickman, and R. Livi.
Infinite numbers of absorbing states: Critical behavior.
Physica D, 103:485-90, 1997.
[nakamura81] K. Nakamura.
Synchronous to asynchronous transformation of polyautomata.
J. Comput. System Sci., 23:22-37, 1981.
[nakao98] Hiroya Nakao.
Asymptotic power law of moments in a random multiplicative process with weak additive noise.
arXiv:cond-mat/9802030, 1998.
[newman00] M. E. J. Newman.
The structure of scientific collaboration networks.
arXiv:cond-mat/0007214, 2000.
[newman00b] M. E. J. Newman.
Who is the best connected scientist? A study of scientific coauthorship networks.
arXiv:cond-mat/0011144, 2000.
[newman03] M. E. J. Newman.
Fast algorithm for detecting community structure in networks.
arXiv:cond-mat/0309508, 2003.
[newman03b] M. E. J. Newman.
Properties of highly clustered networks.
arXiv:cond-mat/0303183, 2003.
[newman04] M. E. J. Newman.
Power laws, Pareto distributions and Zipf's law.
arXiv:cond-mat/0412004, 2004.
[newman97] M. E. J. Newman.
Evidence for self-organized criticality in evolution.
Physica D, 107:293-6, 1997.
[newman99] M. E. J. Newman and D. J. Watts.
Renormalization group analysis of the small-world network model.
Phys. Lett. A, 263:341-6, 1999.
arXiv:cond-mat/9903357.
[newman99b] M. E. J. Newman and Paolo Sibani.
Extinction, diversity and survivorship of taxa in the fossil record.
Proc. R. Soc. London B, 266:1593-9, 1999.
arXiv:adap-org/9811003.
[nieuwenhuizen02] Theo M. Nieuwenhuizen and Armen E. Allhverdyan.
Comment on "Experimental violations of the second law of thermodynamics for small systems and short timescales", 2002.
arXiv:cond-mat/0207587.
[noest97] A. J. Noest.
Instability of the sexual continuum.
Proc. R. Soc. Lond. B, 264:1389-93, 1997.
[nordfalk96] J. Nordfalk and P. Alstrøm.
Phase transitions near the "game of life".
Phys. Rev. E, 54:R1025-8, 1996.
[nowak00] Martin A. Nowak, Karen M. Page, and Karl Sigmund.
Fairness versus reason in the Ultimatum Game.
Science, 289:1773-5, 2000.
[nowak92] M. A. Nowak and R. M. May.
Evolutionary games and spatial chaos.
Nature, 359:826-9, 1992.
[nowak94] Martin A. Nowak, Sebastian Bonhoeffer, and Robert M. May.
Spatial games and the maintenance of cooperation.
Proc. Nat. Acad. Sci. USA, 91:4877-81, 1994.
[olarrea96] José Olarrea and F. Javier de la Rubia.
Stochastic Hopf bifurcation: The effect of colored noise on the bifurcation interval.
Phys. Rev. E, 53:268-71, 1996.
[oliver98] R. Oliver and J. L. Ballester.
Is there memory in solar activity?
Phys. Rev. E, 58:5650-5654, 1998.
[omero97] Marie-José Omeró, Michael Dzierzawa, Matteo Marsili, and Yi-Cheng Zhang.
Scaling behavior in the stable marriage problem.
J. Phys. I France, 7:1723, 1997.
arXiv:cond-mat/9708181.
[osborne59] M. F. M. Osborne.
Brownian motion in the stock market.
Operations Research, 7:145-73, March-April 1959.
[paczuski94] M. Paczuski, S. Maslov, and P. Bak.
Field theory for a model of self-organized criticality.
Europhys. Lett., 27:97-102, 1994.
[painter96] Scott Painter.
Stochastic interpolation of aquifer properties using fractional Lévy motion.
Water Resources Research, 32:1323-1332, 1996.
[palagyi99] Zoltán Palágyi and Rosario N. Mantegna.
Empirical investigation of stock price dynamics in an emerging market.
Physica A, 269:132-9, 1999.
[palmer94] R. G. Palmer, W. B. Arthur, J. H. Holland, B. LeBaron, and P. Taylor.
Artificial economic life: A simple model of a stockmarket.
Physica D, 75:264-74, 1994.
[palus95] M. Palus.
Detecting nonlinearity in multivariate time series.
arXiv:comp-gas/9507004, 1995.
[palus95b] M. Palus, L. Pecen, and D. Pivka.
Estimating predictability: Redundancy and surrogate data method.
arXiv:comp-gas/9507003, 1995.
[parker01] Miles T. Parker.
What is Ascape and why should you care?
J. Artificial Soc. and Social Sim., 4(1), 2001.
http://www.soc.surrey.ac.uk/JASSS/4/1/5.html.
[pastorsatorras00] Romualdo Pastor-Satorras and Alessandro Vespignani.
Epidemic spreading in scale-free networks.
arXiv:cond-mat/0010317, 2000.
[pastorsatorras01] Romualdo Pastor-Satorras and Alessandro Vespignani.
Epidemic spreading in scale-free networks.
Phys. Rev. Lett., 86:3200-3, 2001.
preprint available from arXiv:cond-mat/0010317.
[paxson97] Vern Paxson.
Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic.
Computer Communications Review, 27(5):5-18, 1997.
[peng94] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger.
Mosaic organization of DNA nucleotides.
Phys. Rev. E, 49:1685-1689, 1994.
[peter01] Sacha Peter.
Evolution of decentralized stock exchange market agents.
UBC Physics 349D paper, 2001.
[peters02] Ole Peters, Christopher Hertlein, and Kim Christensen.
A complexity view of rainfall.
Phys. Rev. Lett., 88:018701, 2002.
arXiv:cond-mat/0201468.
[peters02b] Ole Peters and Kim Christensen.
Rain: Relaxations in the sky.
Phys. Rev. E, 66:036120, 2002.
arXiv:cond-mat/0204109.
[petersen97] N. K. Petersen and P. Alstrøm.
Phase transitions in an elementary probabilistic cellular automaton.
Physica A, 235:473-85, 1997.
[pietronero94] L. Pietronero, A. Vespignani, and S. Zapperi.
Renormalization scheme for self-organized criticality in sandpile models.
Phys. Rev. Lett., 72:1690-3, 1994.
[pilgram98] Berndt Pilgram and Daniel T. Kaplan.
A comparison of estimators for 1/f noise.
Physica D, 114:108-122, 1998.
[pinedakrch07] Mario Pineda-Krch, Hendrik J. Blok, Ulf Dieckmann, and Michael Doebeli.
A tale of two cycles - distinguishing quasi-cycles and limit cycles in finite predator-prey populations.
Oikos, 116:53-64, 2007.
Available from http://www.zoology.ubc.ca/~rikblok/lib/pinedakrch07.html.
[plerou99] Vasiliki Plerou, Parameswaran Gopikrishnan, Luís A. Nunes Amaral, Martin Meyer, and H. Eugene Stanley.
Scaling of the distribution of price fluctuations of individual companies.
Phys. Rev. E, 60:6519-29, 1999.
[plischke89] M. Plischke and Birger Bergersen.
Equilibrium Statistical Physics.
Prentice Hall, 1989.
[plischke94] M. Plischke and Birger Bergersen.
Equilibirum Statistical Physics.
World Scientific, second edition, 1994.
[plotnick96] Roy E. Plotnick, Robert H. Gardner, William W. Hargrove, Karen Prestegaard, and Martin Perlmutter.
Lacunarity analysis: A general technique for the analysis of spatial patterns.
Phys. Rev. E, 53:5461-5468, 1996.
[polechova05] Jitka Polechova and Nicholas H. Barton.
Speciation through competition: A critical review.
Evolution, 59:1194-1210, 2005.
[pratt64] John W. Pratt.
Risk aversion in the small and the large.
Econometrica, 32:122-136, 1964.
[press92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, Cambridge, second edition, 1992.
http://www.nr.com.
[puniyani01] Amit R. Puniyani, Rajan M. Lukose, and Bernardo A. Huberman.
Intentional walks on scale free small worlds.
arXiv:cond-mat/0107212, 2001.
[puniyani01b] Amit R. Puniyani and Rajan M. Lukose.
Growing random networks under constraints.
arXiv:cond-mat/0107391, 2001.
[queller03] David C. Queller, Eleonora Ponte, Salvatore Bozzaro, and Joan E. Strassmann.
Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum.
Science, 299:105-6, 2003.
[rajewsky96] N. Rajewsky and M. Schreckenberg.
Exact results for one dimensional stochastic cellular automata for different types of updates.
arXiv:cond-mat/9611154, 1996.
[rajewsky97] N. Rajewsky and M. Schreckenberg.
Exact results for one-dimensional stochastic cellular automata with different types of updates.
Physica A, 245:139-144, 1997.
arXiv:cond-mat/9611154.
[rambaldi94] Sandro Rambaldi and Ombretta Pinazza.
An accurate fractional Brownian motion generator.
Physica A, 208:21-30, 1994.
[rapaport76] Anatol Rapaport, Melvin J. Guyer, and David G. Gordon.
The 2 times 2 Game.
University of Michigan, USA, 1976.
[rasband90] S. Neil Rasband.
Chaotic dynamics of nonlinear systems.
John Wiley & Sons, U.S.A., 1990.
[raup86] David M. Raup.
Biological extinction in Earth history.
Science, 231:1528-33, 1986.
[ravasz02] Erzsébet Ravasz and Albert-László Barabási.
Hierarchical organization in complex networks.
arXiv:cond-mat/0206130, 2002.
[raymond99] Gary M. Raymond and James B. Bassingthwaighte.
Deriving dispersional and scaled windowed variance analyses using the correlation function of discrete fractional Gaussian noise.
Physica A, 265:85-96, 1999.
[reif65] F. Reif.
Fundamentals of Statistical and Thermal Physics.
McGraw-Hill, 1965.
[risken89] Hannes Risken.
The Fokker-Planck Equation: Methods of Solution and Applications.
Springer-Verlag, Berlin, second edition, 1989.
[roehner98] B. M. Roehner and D. Sornette.
The sharp peak-flat trough pattern and critical speculation.
Eur. Phys. J. B, 4:387-399, 1998.
[roehner99] B. Roehner and D. Sornette.
Analysis of the phenomenon of speculative trading in one of its basic manifestations: postage stamp bubbles.
arXiv:cond-mat/9906435, 1999.
[rolf98] J. Rolf, T. Bohr, and M. H. Jensen.
Directed percolation universality in asynchronous evolution of spatiotemporal intermittency.
Phys. Rev. E, 57:R2503-6, 1998.
[rose98] Nick Rose.
Controversies in meme theory.
J. Memetics - Evol. Models of Inform. Trans., 2, 1998.
[rostovtsev05] A. Rostovtsev.
On a geometric mean and power-law statistical distributions.
arXiv:cond-mat/0507414, 2005.
[rosvall03] Martin Rosvall and Kim Sneppen.
Modeling dynamics of information networks.
Phys. Rev. E, 91:178701-1-4, 2003.
[rotyis97] J. Rotyis and G. Vattay.
Statistical analysis of the stock index of the budapest stock exchange.
arXiv:cond-mat/9711008, 1997.
[rozenfeld04] Hernán D. Rozenfeld, Joseph E. Kirk, Erik M. Bollt, and Daniel Ben-Avraham.
Statistics of cycles: How loopy is your network?
arXiv:cond-mat/0403536, 2004.
[rudolph02] Terry Rudolph.
Constructing physically intuitive graph invariants.
arXiv:quant-ph/0206068, 2002.
[sales93] T. R. M. Sales.
Life in one dimension: Statistics and self-organized criticality.
J. Phys. A: Math. Gen., 26:6187-93, 1993.
[saleur96] H. Saleur, C. G. Sammis, and D. Sornette.
Discrete scale invariance, complex fractal dimensions, and log-periodic fluctuations in seismicity.
J. Geophys. Research, 101:17661-77, 1996.
[samuelson71] Paul A. Samuelson.
The "fallacy" of maximiing the geometric mean in long sequences of investing or gambling.
Proc. Nat. Acad. Sci. USA, 68:2493-6, 1971.
[savit99] Robert Savit, Radu Manuca, and Rick Riolo.
Adaptive competition, market efficiency, and phase transitions.
Phys. Rev. Lett., 82:2203-6, 1999.
[scalas00] Enrico Scalas, Rudolf Gorenflo, and Francesco Mainardi.
Fractional calculus and continuous-time finance.
Physica A, 284:376-84, 2000.
arXiv:cond-mat/0001120.
[schepers92] Hans E. Schepers, Johannes H. G. M. Van Beek, and James B. Bassingthwaighte.
Four methods to estimate the fractal dimension from self-affine signals.
IEEE Engineering in Medicine and Biology, 11:57-64,71, 1992.
[schofisch96] B. Schöfisch and K. P. Hadeler.
Dimer automata and cellular automata.
Physica D, 94:188-204, 1996.
[schonfisch99] Birgitt Schönfisch and André de Roos.
Synchronous and asynchronous updating in cellular automata.
BioSystems, 51:123-43, 1999.
[schulke00] L. Schülke.
Short-time critical dynamics.
arXiv:hep-lat/0007003, 2000.
[schulman01] L. S. Schulman.
Resolution of causal paradoxes arising from opposing thermodynamic arrows of time.
arXiv:cond-mat/0102014, 2001.
[schweitzer02] Frank Schweitzer and Benno Tilch.
Self-assembling of networks in an agent-based model.
Physical Review E, 66:026113 (1-9), 2002.
arXiv:cond-mat/0212240.
[servedio03] Vito D. P. Servedio and Guido Caldarelli.
Vertex intrinsic fitness: How to produce arbitrary scale-free networks.
arXiv:cond-mat/0309659, 2003.
[sethi01] Rajiv Sethi and E. Somanathan.
Preference evolution and reciprocity.
J. Econ. Theory, 97:273-97, 2001.
preprint available from http://econwpa.wustl.edu:8089/eps/game/papers/9903/9903001.pdf.
[shnerb03] Nadav M. Shnerb.
Pattern formation and nonlocal logistic growth.
arXiv:cond-mat/0311230, 2003.
[shnerb99] Nadav M. Shnerb, Yoram Louzoun, Eldad Bettelheim, and Sorin Solomon.
The importance of being discrete - life always wins on the surface.
arXiv:adap-org/9912005, 1999.
[sinai76] Y. G. Sinai.
Self-similar probability distributions.
Theory of Probability and its Applications, 21:64-80, 1976.
[sinervo96] B. Sinervo and C. M. Lively.
The rock-paper-scissors game and the evolution of alternative male strategies.
Nature, 380:240-3, 1996.
[skyrms00] Brian Skyrms and Robin Pemantle.
A dynamic model of social network formation.
Proc. Nat. Acad. Sci. USA, 97:9340-6, 2000.
preprint available from http://www.math.ohio-state.edu/~pemantle/pnas000510.ps.
[skyrms00b] Brian Skyrms.
Game theory, rationality and evolution of the social contract.
J. Conscious. Stud., 7:269-84, 2000.
[skyrms96] Brian Skyrms.
Evolution of the social contract.
Cambridge University Press, Cambridge, 1996.
[slanina99] Frantiv sek Slanina.
On the possibility of optimal investment.
arXiv:cond-mat/9905050, 1999.
[sneppen95] Kim Sneppen, Per Bak, Henrik Flyvbjerg, and Mogens H. Jensen.
Evolution as a self-organized critical phenomenon.
Proc. Natl. Acad. Sci. USA, 92:5209-13, 1995.
[sole95] Ricard V. Solé and Octavio Miramontes.
Information at the edge of chaos in fluid neural networks.
Physica D, 80:171-80, 1995.
[sole97] Ricard V. Solé, Susanna C. Manrubia, Michael Benton, and Per Bak.
Self-similarity of extinction statistics in the fossil record.
Nature, 388:764-7, 1997.
Available from http://pangea.stanford.edu/Oceans/GES290/SOC/GES290sole1997.pdf.
[soler01] José M. Soler.
Efficient index handling of multidimensional periodic boundary conditions.
arXiv:cond-mat/0104182, 2001.
[solomon99] Sorin Solomon.
Towards behaviorly realistic simulations of the stock market.
arXiv:adap-org/9901003, 1999.
[sornette02] D. Sornette and A. Helmstetter.
Endogeneous versus exogeneous shocks in systems with memory.
arXiv:cond-mat/0206047, 2002.
[sornette95] D. Sornette, A. Johansen, and I. Dornic.
Mapping self-organized criticality onto criticality.
J. Phys. I France, 5:325-35, 1995.
http://alf.nbi.dk/~johansen/Papers/nosoc.ps.gz.
[sornette95b] D. Sornette and C. G. Sammis.
Complex critical exponents from renormalization group theory of earthquakes: Implications for earthquake predictions.
J. Phys. I France, 5:607-19, 1995.
[sornette96] D. Sornette, A. Johansen, and J.-P. Bouchaud.
Stock market crashes, precursors and replicas.
J. Phys. I France, 6:167-75, 1996.
[sornette97] Didier Sornette and Rama Cont.
Convergent multiplicative processes repelled from zero: Power laws and truncated power laws.
J. Phys. I France, 7:431-44, 1997.
[sornette98] D. Sornette, J. V. Andersen, and P. Simonetti.
Minimizing volatility increases large risks.
arXiv:cond-mat/9811292, submitted to Risk Magazine, 1998.
[sornette98b] Didier Sornette.
Discrete scale invariance and complex dimensions.
Physics Reports, 297:239-270, 1998.
arXiv:cond-mat/9707012.
[stanley95] Michael H. R. Stanley, Sergey V. Buldyrev, Shlomo Havlin, Rosario N. Mantegna, Michael A. Salinger, and H. Eugene Stanley.
Zipf plots and the size distribution of firms.
Econ. Lett., 49:453-7, 1995.
[stauffer98] D. Stauffer and T.J.P. Penna.
Crossover in the Cont-Bouchaud percolation model for market fluctuations.
Physica A, 256:284-90, 1998.
[stauffer99] Dietrich Stauffer and Didier Sornette.
Self-organized percolation model for stock market fluctuations.
Physica A, 271:496-506, 1999.
[stenull98] Olaf Stenull and Heinz G. Schuster.
A solvable replicator model.
J. Phys. A: Math. Gen., 31:L301-4, 1998.
[stone93] Lewi Stone.
Period-doubling reversals and chaos in simple ecological models.
Nature, 365:617-20, 1993.
[strassmann00] Joan E. Strassmann, Yong Zhu, and David C. Queller.
Altruism and social cheating in the social amoeba Dictyostelium discoideum.
Nature, 408:965-7, 2000.
[subramanian97] Devika Subramanian, Peter Druschel, and Johny Chen.
Ants and reinforcement learning: A case study in routing in dynamic networks.
In Tom Dean, editor, Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, Nagoya, Japan, 1997. Morgan Kaufmann.
[sugihara90] G. Sugihara and R. M. May.
Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.
Nature, 344:734-41, 1990.
[sumaila97] U. R. Sumaila.
Strategic dynamic interaction: The case of barents sea fisheries.
Marine Resource Economics, 12:77-94, 1997.
[suzuki00] Reiji Suzuki and Takaya Arita.
Interaction between evolution and learning in a population of globally or locally interacting agents.
In Proc. 7th Int. Conf. On Neural Inf. Processing, pages 738-43, 2000.
preprint available from http://www2.create.human.nagoya-u.ac.jp/publication/iconip_evle.pdf.
[szabo01] György Szabó and Tamás Czárán.
Phase transition in a spatial Lotka-Volterra model.
Phys. Rev. E, 63:061904, 2001.
arXiv:cond-mat/0008311.
[szabo01b] György Szabó and Tamás Czárán.
Defensive alliances in spatial models of cyclical population interactions.
Phys. Rev. E, 64:042902, 2001.
arXiv:cond-mat/0103625.
[szabo02] György Szabó and Christoph Hauert.
Phase transitions and volunteering in spatial public goods games.
arXiv:cond-mat/0207569, 2002.
[szabo98] G. Szabó and C. Tóke.
Evolutionary prisoner's dilemma game on a square lattice.
Phys. Rev. E, 58:69-73, 1998.
arXiv:cond-mat/9710096.
[takahasi98] Kiyosi Takahasi.
Evolution of tranmission bias in cultural inheritance.
J. Theor. Biol., 190:147-59, 1998.
[takayasu99] H. Takayasu and M. Takayasu.
Critical fluctuations of demand and supply.
Physica A, 269:24-9, 1999.
[tang99] Lei-Han Tang and Guang-Shan Tian.
Reaction-diffusion-branching models of stock price fluctuations.
Physica A, 264:543-50, 1999.
[taqqu95] Murad S. Taqqu, Vadim Teverovsky, and Walter Willinger.
Estimators for long-range dependence: An empirical study.
Fractals, 3:785-788, 1995.
[taqqu97] Murad S. Taqqu and Vadim Teverovsky.
Robustness of Whittle-type estimators for time series with long-range dependence.
Stochastic Models, 13:723-757, 1997.
http://math.bu.edu/INDIVIDUAL/murad/pub/robustness-posted.ps.
[thurner97] Stefan Thurner, Steven B. Lowen, Markus C. Feurstein, and Conor Heneghan.
Analysis, synthesis, and estimation of fractal-rate stochastic point processes.
Fractals, 5:565-595, 1997.
[tokita03] Kei Tokita and Ayumu Yasutomi.
Emergence of a complex and stable network in a model ecosystem with extinction and mutation.
Theor. Pop. Biol., 63:131-46, 2003.
[traulsen05] Arne Traulsen, Jens Christian Claussen, and Christoph Hauert.
Coevolutionary dynamics: From finite to infinite populations.
Phys. Rev. Lett., 95:238701, 2005.
arXiv:cond-mat/0409655.
[tribelsky01] Michael I. Tribelsky.
Tails of probability density for sums of random independent variables.
arXiv:math.PR/0106037, 2001.
[tsallis95] Constantino Tsallis, Silvio V. F. Levy, André M. C. Souza, and Roger Maynard.
Statistical-mechanical foundation of the ubiquity of lévy distributions in nature.
Phys. Rev. Lett., 75:3589-93, 1995.
[tsallis97] C. Tsallis, A. R. Plastino, and W.-M. Zheng.
Power-law sensitivity to initial conditions-new entropic representation.
Chaos, Solitons and Fractals, 8:885-91, 1997.
[tsallis98] Constantino Tsallis.
Generalized entropy-based criterion for consistent testing.
Phys. Rev. E, 58:1442-5, 1998.
[tsimring97] L. S. Tsimring and I. S. Aranson.
Localized and cellular patterns in a vibrated granular layer.
preprint, 1997.
[tsonis97] A. A. Tsonis, C. Schultz, and P. A. Tsonis.
Zipf's law and the structure and evolution of languages.
Complexity, 2(5):12-3, 1997.
[turcotte99] Donald L. Turcotte.
Self-organized criticality.
Rep. Prog. Phys., 62:1377-429, 1999.
[umbanhowar96] P. B. Umanhowar, F. Melo, and H. L. Swinney.
Localized excitations in a vertically vibrated granular layer.
Nature, 382:793-6, 1996.
[vanenk00] S. J. Van Enk and David A. Meyer.
"Quantum and classical game strategies" and Reply.
Phys. Rev. Lett., 84:789-90, 2000.
[vankampen81] N. G. Van Kampen.
Stochastic Processes in Physics and Chemistry.
North-Holland, 1981.
[vespignani95] Alessandro Vespignani, Stefano Zapperi, and Luciano Pietronero.
Renormalization approach to the self-organized behavior of sandpile models.
Phys. Rev. E, 51:1711-24, 1995.
[vespignani98] Alessandro Vespignani and Stefano Zapperi.
How self-organized criticality works: A unified mean-field picture.
Phys. Rev. E, 57:6345-62, 1998.
[vespignani98b] Alessandro Vespignani, Ronald Dickman, Miguel A. Muñoz, and Stefano Zapperi.
Driving, conservation, and absorbing states in sandpiles.
Phys. Rev. Lett., 81:5676-9, 1998.
[vichniac84] G. Y. Vichniac.
Simulating Physics with cellular automata.
Physica D, 10:96-116, 1984.
[vonneumann44] John Von Neumann and Oskar Morgenstern.
Theory of games and economic behavior.
Princeton University Press, Princeton, 1944.
[voss85] R. F. Voss.
Random fractal forgeries.
In R. A. Earnshaw, editor, Fundamental Algorithms in Computer Graphics, pages 805-835. Springer-Verlag, Berlin, 1985.
[wahl99] Lindi M. Wahl and Martin A. Nowak.
The continuous prisoner's dilemma: I. Linear reactive strategies.
J. Theor. Biol., 200:307-21, 1999.
[walters86] Carl Walters.
Adaptive Management of Renewable Resources.
Macmillan, New York, 1986.
[walters87] Carl J. Walters, E. Krause, W. E. Neill, and T. G. Northcote.
Equilibrium models for seasonal dynamics of plankton biomass in four oligotrophic lakes.
Can. J. Fish. Aquat. Sci., 44:1002-17, 1987.
[wang97] F. A. Wang.
Investor sentiment, market evolution, and survival.
http://www.gsm.cornell.edu/wfa/papers/wang.pdf, 1997.
[warren01] C. P. Warren, L. M. Sander, and I. M. Sokolov.
Firewalls, disorder, and percolation in epidemics.
arXiv:cond-mat/0106450, 2001.
[weidlich91] W. Weidlich.
Physics and social science-the approach of synergenics.
Phys. Reports, 204:1-163, 1991.
[weigend91] Swiss Franc-U.S. Dollar tickwise exchange rate data, 1985-1991.
Available from http://www.stern.nyu.edu/~aweigend/Time-Series/Data/SFR-USD.Tickwise.gz, provided by Andreas Weigend.
[weron01] Rafal Weron.
Levy-stable distributions revisited: Tail index > 2 does not exclude the Levy-stable regime.
Int. J. Mod. Phys. C, 12(2):209-23, 2001.
arXiv:cond-mat/0103256.
[weron96] Rafal Weron.
On the Chambers-Mallows-Stuck method for simulating skewed stable random variables (and correction).
Statistical Probability Letters, 28:165-171, 1996.
http://www.im.pwr.wroc.pl/~hugo/publ/RWeron-SPL-95.ps, correction in Research Report HSC/96/1, Wroclaw Univ. of Technology rweron-spl95-corr.ps.
[west02] Stuart A. West, Ido Pen, and Ashleigh S. Griffin.
Cooperation and competition between relatives.
Science, 296:72-5, 2002.
[west99] S. A. West, C. M. Lively, and A. F. Read.
A pluralist approach to sex and recombination.
J. Evol. Biol., 12:1003-12, 1999.
[west99b] Geoffrey B. West, James H. Brown, and Brian J. Enquist.
The fourth dimension of life: Fractal geometry and allometric scaling of organisms.
Science, 284:1677-9, 1999.
[whitfield02] John Whitfield.
Social insects: The police state.
Nature, 416:782-4, 2002.
[wolfram02] Stephen Wolfram.
A New Kind of Science.
Wolfram Media, Champaign, Il, 2002.
[wolfram83] Stephen Wolfram.
Statistical mechanics of cellular automata.
Rev. Mod. Phys., 55:601-44, 1983.
[wolfram84] Stephen Wolfram.
Universality and complexity in cellular automata.
Physica D, 10:1-35, 1984.
http://www.stephenwolfram.com/publications/articles/ca/84-universality/index.html.
[wootters90] W. K. Wootters and C. G. Langton.
Is there a sharp phase transition for deterministic cellular automata?
Physica D, 45:95-104, 1990.
[wootton01] J. Timothy Wootton.
Local interactions predict large-scale pattern in empirically derived cellular automata.
Nature, 413:841-4, 2001.
[yahoo99] Yahoo! Finance historical quotes, 1999.
http://chart.yahoo.com/t.
[yang04] Chun-Xia Yang, Tao Zhou, Pei-Ling Zhou, Jun Liu, and Zi-Nan Tang.
Study on evolvement complexity in an artificial stock market.
arXiv:cond-mat/0406168, 2004.
[yin96] Z.-M. Yin.
New methods for simulation of fractional Brownian motion.
Journal of Computational Physics, 127:66-72, 1996.
[yodzis89] Peter Yodzis.
Introduction to theoretical ecology.
Harper and Row, New York, 1989.
[youssefmir94] M. Youssefmir, B. A. Huberman, and T. Hogg.
Bubbles and market crashes.
ftp://parcftp.xerox.com/pub/dynamics/bubbles.ps, 1994.
[youssefmir95] M. Youssefmir and B. A. Huberman.
Clustered volatility in multiagent dynamics.
ftp://parcftp.xerox.com/pub/dynamics/volatility.ps, 1995.
[yukalov03] V. I. Yukalov, S. Gluzman, and D. Sornette.
Summation of power series by self-similar factor approximants.
arXiv:cond-mat/0302613, 2003.
[zaitsev92] S. I. Zaitsev.
Robin hood as self-organized criticality.
Physica A, 189:411-6, 1992.
[zanette01] Damián Zanette.
Critical behavior of propagation on small-world networks.
arXiv:cond-mat/0105596, 2001.
[zanette97] Damián H. Zanette and Susanna C. Manrubia.
Role of intermittency in urban development: A model of large-scale city formation.
Phys. Rev. Lett., 79:523-6, 1997.
[zeigler82] B. P. Zeigler.
Discrete event models for cell space simulation.
Int. J. Theor. Phys., 21:573-88, 1982.
[zhang98] Y.-C. Zhang and M. Ausloos.
Evolving models of financial markets; the money games physicists play.
Europhys. News, pages 51-54 and 70-72, March/April 1998.
[zhang99] Yi-Cheng Zhang.
Toward a theory of marginally efficient markets.
arXiv:cond-mat/9901243, 1999.

Generated by bbl2html.awk v1.3b
Top of page