Tag Archives: society

On Culling Overabundant Wildlife

Ecologists have written much about the culling of wildlife from an ecological and conservation perspective (Caughley 1981, Jewell et al. 1981, Bradford and Hobbs 2008, Hampton and Forsyth 2016). The recommendations for culling as a method for reducing overabundant wildlife populations are typically scientifically well established and sensitive to animal welfare. The populations chosen for culling are classified as ‘overabundant’. But overabundant is a human-defined concept, and thus requires some form of social license to agree about what species, in which conditions, should be classified as ‘overabundant’. The problem of overabundance usually arises when humans make changes that permit a species to become so numerous locally that it is having an adverse effect on its food supply, its competitors, or the integrity of the ecosystem it occupies. Once overabundance is recognized, the management issue is to determine which methods should be used to reduce abundance to a suitable level. Culling is only one option for removing wildlife, and animals may be captured and moved elsewhere if that is possible or sterilized to prevent reproduction and further increase (Liu et al. 2012, Massei and Cowan 2014).

All these policy issues are subject to open public debate and these debates are often heated because of different belief systems. Animal rights advocates may push the assumption that we humans have no rights to kill any wildlife at all. News media often concentrate on the most stringent views on controlling populations that are overabundant, and public discussion becomes impossible. Two aspects need to be noted that are often lost in any discussion. First is the cost of alternatives in dollars and cents. As an example, most ecologists would agree that wild horses are overabundant on open range in western United States (Davies et al. 2014, Rutberg et al. 2017) but the question is what to do about this. Costs to reduce horse populations by capturing horses and penning them and feeding them are astronomical (the current situation in western USA, estimated at $25,000 per animal) but this method of control could be done if society wishes to spend money to achieve this goal. Culling would be much cheaper, but the killing of large animals is anathema to many people who speak loudly to politicians. Fertility control methods are improving with time and may be more acceptable socially, but costs are high and results in population reduction can be slow in coming (Hobbs and Hinds 2018). Models are essential to sort out many of these issues, whether it be the projected costs of various options (including doing nothing), the expected population trajectory, or the consequences for other species in the ecosystem.

The bottom line is that if overabundant wildlife populations are not reduced by some means, the result must be death by starvation or disease coupled with extensive damage to other species in these ecosystems. This type of “Plan B” is the second aspect not often considered in discussions of policies on overabundant species. In the present political scene in North America opposition to culling overabundant wildlife is strong, coherent discussion is rarely possible, and Plan B problems are rarely heard. Most overabundant wildlife result from human actions in changing the vegetation, introducing new species, and reducing and fragmenting wildlife habitats. Wishing the problems will go away without doing anything is not a feasible course of action.

These kinds of problems in wildlife management are soluble in an objective manner with careful planning of research and management actions (Hone et al. 2017). Ecologists have a moral duty to present all scientific sides of the management of overabundant species, and to bring evidence into the resulting social and political discussions of management issues. It is not an easy job.

Bradford, J.B., and N.T. Hobbs. 2008. Regulating overabundant ungulate populations: An example for elk in Rocky Mountain National Park, Colorado. Journal of Environmental Management 86:520-528. doi: 10.1016/j.jenvman.2006.12.005

Caughley, G. 1981. Overpopulation. Pages 7-19 in P.A. Jewell S. Holt, and D. Hart, editors. Problems in Management of Locally Abundant Wild Mammals. Academic Press, New York. ISBN: 978-0-12-385280-9

Davies, K. W., Collins, G. & Boyd, C. S. (2014) Effects of feral free-roaming horses on semi-arid rangeland ecosystems: an example from the sagebrush steppe. Ecosphere, 5, 127. doi: 10.1890/ES14-00171.1

Hampton, J. O., and D. M. Forsyth. 2016. An assessment of animal welfare for the culling of peri-urban kangaroos. Wildlife Research 43:261-266. doi: 10.1071/WR16023

Hobbs, R.J. and Hinds, L.A. (2018). Could current fertility control methods be effective for landscape-scale management of populations of wild horses (Equus caballus) in Australia? Wildlife Research 45, 195-207. doi: 10.1071/WR17136.

Hone, J., Drake, V.A. & Krebs, C.J. (2017) The effort–outcomes relationship in applied ecology: Evaluation and implications BioScience, 67, 845-852. doi: 10.1093/biosci/bix091

Jewell, P. A., Holt, S. & Hart, D. (1982) Problems in Management of Locally Abundant Wild Mammals. Academic Press, New York. 360 pp. ISBN: 978-0-12-385280-9

Liu, M., Qu, J., Yang, M., Wang, Z., Wang, Y., Zhang, Y. & Zhang, Z. (2012) Effects of quinestrol and levonorgestrel on populations of plateau pikas, Ochotona curzoniae, in the Qinghai-Tibetan Plateau. Pest Management Science, 68, 592-601. doi: 10.1002/ps.2302

Massei, G. & Cowan, D. (2014) Fertility control to mitigate human–wildlife conflicts: a review. Wildlife Research, 41, 1-21. doi: 10.1071/WR13141

Rutberg, A., Grams, K., Turner, J.W. & Hopkins, H. (2017) Contraceptive efficacy of priming and boosting doses of controlled-release PZP in wild horses. Wildlife Research, 44, 174-181. doi: 10.1071/WR16123

A Need for Champions

The World has many champions for the Olympics, economists have champions for free trade, physicists have champions for the Hadron Collider, astronomists for space telescopes, but who are the champions for the environment?  We have many environmental scientists who try to focus the public’s attention on endangered species, the state of agriculture, pollution of air and water, and the sustainability of marine fisheries, but they are too much ignored. Why do we have this puzzle that the health of the world we all live in is too often ignored when governments release their budgets?

There are several answers to this simple question. First of all, the ‘jobs and growth’ paradigm rules, and exponential growth is the ordained natural order. The complaint we then get is that environmental scientists too often suggest that studies are needed, and the results of these studies produce recommendations that will impede jobs and growth. Environmental science not only does not produce more dollar bills but in fact diverts dollars from other more preferred activities that increase the GDP.

Another important reason is that environmental problems are slow-moving and long-term, and our human evolutionary history shows that we are poor at dealing with such problems. We can recognize and adapt quickly to short-term problems like floods, epidemics, and famines but we cannot see the inexorable rise in sea levels of 3 mm per year. We need therefore champions of the environment with the charisma to attract the world’s attention to slow-moving, long-term problems. We have some of these champions already – James Hansen, David Suzuki, Tim Flannery, Paul Ehrlich, Naomi Klein – and they are doing an excellent job of producing scientific discussions on our major environmental problems, information that is unfortunately still largely ignored on budget day. There is progress, but it is slow, and in particular young people are more aware of environmental issues than are those of the older generation.

What can we do to change the existing dominant paradigm into a sustainable ecological paradigm? Begon (2017) argues that ecology is both a science and a crisis discipline, and his concern is that at the present time ecological ideas about our current crises are not taken seriously by the general public and policy leaders. One way to change this, Begon argues, is to reduce our reliance on specific and often complicated evidence and convert to sound bites, slogans that capture the emotions of the public rather than their intellect. So, I suggest a challenge can be issued to ecology classes across the world to spend some time brainstorming on suitable slogans, short appealing phrases that encapsulate what ecologists understand about our current problems. Here are three suggestions: “We cannot eat coal and oil – support agriculture”, “Think long-term, become a mental eco-geologist”, and “The ocean is not a garbage can”. Such capsules are not for all occasions, and we must maintain our commitment to evidence-based-ecology of course (as Saul et al. 2017 noted). That this kind of communication to the general public is not simple is well illustrated in the paper by Casado-Aranda et al. (2017) who used an MRI to study brain waves in people exposed to ecological information. They found that people’s attitudes to ecological messages were much more positive when the information was conveyed in future-framed messages delivered by a person with a younger voice. So perhaps the bottom line is to stop older ecologists from talking so much, avoid talking about the past, and look in the future for slogans to encourage an ecological world view.

Begon, M. 2017. Winning public arguments as ecologists: Time for a New Doctrine? Trends in Ecology & Evolution 32:394-396. doi: 10.1016/j.tree.2017.03.009

Casado-Aranda, L.-A., M. Martínez-Fiestas, and J. Sánchez-Fernández. 2018. Neural effects of environmental advertising: An fMRI analysis of voice age and temporal framing. Journal of Environmental Management 206:664-675. doi: 10.1016/j.jenvman.2017.10.006

Saul, W.-C., R.T. Shackleton, and F.A. Yannelli. 2017. Ecologists winning arguments: Ends don’t justify the means. A response to Begon. Trends in Ecology & Evolution 32:722-723. doi: 10.1016/j.tree.2017.08.005

 

On Immigration – An Ecological Perspective

There is a great deal of discussion in the news about immigration into developed countries like Canada, USA, and Europe. The perspective on this important issue in the media is virtually entirely economic and social, occasionally moral, but in my experience almost never ecological. There are two main aspects of immigration that are particularly ecological – defining sustainable populations and protecting ecosystems from biodiversity loss. These ecological concerns ought to be part of the discussion.

Sustainability is one of the sciences current buzz words. As I write this, in the Web of Science Core Collection I can find 9218 scientific papers published already in 2017 that appear under the topic of ‘sustainability’. No one could read all these, and the general problem with buzz words like ‘sustainability’ is that they tend to be used so loosely that they verge on the meaningless. Sustainability is critical in this century, but as scientists we must specify the details of how this or that public policy really does increase some metric of sustainability.

There have been several attempts to define what a sustainable human population might be for any country or the whole Earth (e.g. Ehrlich 1996, Rees and Wackernagel 2013) and many papers on specific aspects of sustainability (e.g. Hilborn et al. 2015, Delonge et al. 2016). The controversy arises in specifying the metric of sustainability. The result is that there is no agreement particularly among economists and politicians about what to target. For the most part we can all agree that exponential population growth cannot continue indefinitely. But when do we quit? In developed countries the birth rate is about at equilibrium, and population growth is achieved in large part by immigration. Long term goals of achieving a defined sustainable population will always be trumped in the short term by changes in the goal posts – long term thinking seems almost impossible in our current political systems. One elephant in the room is that what we might define now as sustainable agriculture or sustainable fisheries will likely not be sustainable as climates change. Optimists predict that technological advances will greatly relieve the current limiting factors so all will be well as populations increase. It would seem to be conservative to slow our population growth, and thus wait to see if this optimism is justified (Ehrlich and Ehrlich 2013).

Few developed countries seem to have set a sustainable population limit. It is nearly impossible to even suggest doing this, so this ecological topic disappears in the media. One possible way around this is to divert the discussion to protecting ecosystems from biodiversity loss. This approach to the overall problem might be an easier topic to sell to the public and to politicians because it avoids the direct message about population growth. But too often we run into a brick wall of economics even when we try this approach to sustainability because we need jobs for a growing population and the holy grail of continued economic growth is a firm government policy almost everywhere (Cafaro 2014, Martin et al. 2016). At present this biodiversity approach seems to be the best chance of convincing the general public and politicians that action is needed on conservation issues in the broad sense. And by doing this we can hopefully obtain action on the population issue that is blocked so often by political and religious groups.

A more purely scientific issue is the question why the concept of a sustainable population is thought to be off limits for a symposium at a scientific meeting? In recent years attempts to organize symposia on sustainable population concepts at scientific conferences have been denied by the organizers because the topic is not considered a scientific issue. Many ecologists would deny this because without a sustainable population, however that is defined, we may well face social collapse (Ehrlich and Ehrlich 2013).

What can we do as ecologists? I think shying away from these population issues is impossible because we need to have a good grounding in population arithmetic to understand the consequences of short-term policies. It is not the ecologist’s job to determine public policy but it is our job to question much of the pseudo-scientific nonsense that gets repeated in the media every day. At least we should get the arithmetic right.

Cafaro, P. (2014) How Many Is Too Many? The Progressive Argument for Reducing Immigration into the United States. University of Chicago Press, Chicago. ISBN: 9780226190655

DeLonge, M.S., Miles, A. & Carlisle, L. (2016) Investing in the transition to sustainable agriculture. Environmental Science & Policy, 55, 266-273. doi: 10.1016/j.envsci.2015.09.013

Ehrlich, A.H. (1996) Towards a sustainable global population. Building Sustainable Societies (ed. D.C. Pirages), pp. 151-165. M. E. Sharpe, London. ISBN: 1-56324-738-0, 978-1-56324-738-5

Ehrlich, P.R. & Ehrlich, A.H. (2013) Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences, 280, 20122845. doi: 10.1098/rspb.2012.2845

Hilborn, R., Fulton, E.A., Green, B.S., Hartmann, K. & Tracey, S.R. (2015) When is a fishery sustainable? Canadian Journal of Fisheries and Aquatic Sciences, 72, 1433-1441. doi: 10.1139/cjfas-2015-0062

Hurlbert, S.H. (2013) Critical need for modification of U.S. population policy. Conservation Biology, 27, 887-889. doi: 10.1111/cobi.12091

Martin, J.-L., Maris, V. & Simberloff, D.S. (2016) The need to respect nature and its limits challenges society and conservation science. Proceedings of the National Academy of Sciences, 113, 6105-6112. doi: 10.1073/pnas.1525003113

Rees W.E. &, Wackernagel, M. (2013). The shoe fits, but the footprint is larger than Earth. PLOS Biology 11, e1001701. doi: 10.1371/journal.pbio.1001701

Fire and Fury and the Environment

The media at present is full of comments about having a war that will stimulate the economy, at least in reconstruction. And this concern over war and the costs of war prompted me to investigate the relative costs of military funding and environmental funding. So here is a very coarse look at the relative positions of military funding and environmental funding in a few western countries. All the numbers are approximate and refer to 2016 and possibly 2017 budgets, and all are in billions of dollars.

Military expenditures by countries are easiest to obtain, and here are a few for the most recent years I could find:

United States:         $ 611 billion
China:                       $ 216
Russia:                      $ 69
Saudi Arabia:           $ 64
Australia:                  $ 24
Canada:                    $ 15.5

Environmental funding is much more difficult to decompose because different countries amalgamate different agencies into one Department. Consequently, comparisons are best made within one country rather than between countries. Here are a few details for particular agencies:

USA            Department of the Interior     $ 13.4            1 military year = 46 Dept. years
NOAA                                                             $ 5.77             1 military year = 106 NOAA years

Canada      Environment Canada              $ 0.987            1 military year = 16 EC years

Australia     CSIRO                                       $ 0.803            1 military year = 30 CSIRO years

Clearly there are many problems with these simple comparisons. NOAA for example includes agencies covering Marine Fisheries, Weather Service, Environmental Satellites, Aviation Operations, and Oceanic Research among other responsibilities. CSIRO includes divisions dealing with agriculture, climate change, and mining research. I am sure that someone has done a more detailed analysis of these comparisons, but the general message is very clear: the environment is a low priority among western nations, and if you want a rough number one might say the military is about 30 times more “important” than the environment when it comes to funding. If you look for example at the Australian budget for 2017 (http://budget.gov.au/2017-18/content/glossies/overview/download/Budget2017-18-Overview.pdf ) and search for the word ‘environment’ as in the real biophysical environment, you will find not a single case of this word appearing. It is as though the biophysical environment does not exist as a problem in 2017.

I am not clear if anyone worries about these simple facts. The general problem is that federal government budgets are made so complex and presented so poorly that it is nearly impossible to separate out different equivalent expenditures. Thus for example the military argues that it does scientific research with part of its funding, and universities fail to point out that some of their basic research focuses on military questions rather than questions that might benefit humanity (Smart 2016).

I hope that others might look into these expenditures in more detail, and that in the long run we might be more aware of where our tax dollars go. The simple suggestion that the last page of our tax file should give us a choice of what general areas we would like to support with our taxes would be a start. On the last list I saw of 25 ‘items of interest’ to taxpayers who might like more information, the words ‘environment’, ‘conservation’, or ‘sustainability’ never appeared. We should demand this be changed.
Smart, B. (2016). Military-industrial complexities, university research and neoliberal economy. Journal of Sociology 52, 455-481. doi: 10.1177/1440783316654258

Demography Made Simple

I have grown weary of listening to radio and TV new announcers discuss the human population problem. I think a primer of a few principles of population arithmetic might be useful to remind us where we ecologists sit in these discussions. The problem centres on the issue of eternal growth and then the transition of any population from a growing one to a stable one. I concentrate here on human populations but the results apply to any long-lived species.

I list four empirical principles of demography.

  1. No population can continue growing without limit. This generalization is rock solid, so it would be good to keep mentioning it to sceptics of the following generalizations.
  2. Populations grow when births and immigration exceed deaths and emigration. If we consider the entire global human population, emigration and immigration disappear since we have not yet colonized space. Populations stabilize when births equal deaths.
  3. A population that moves from a growth phase to a stable phase must change in age structure. Every stable population must contain fewer young persons and more older persons.
  4. These changes in age structure have enormous implications for our requirements for hospitals, doctors, schools, teachers, and social support agencies. These changes are almost completely predicable for humans and should not come as a surprise to politicians.
  5. Pushing the panic button because a particular population like that of Japan is stabilizing and could even decline slightly may be useful for economists wishing for infinite growth but should be recognized as an expected event for every country in the future.

The bottom line is that we have the knowledge and the ability to plan for the cessation of human population growth. Many good books have been written to make these points and we need to keep repeating them. That many people do not understand the simple arithmetic of population change is a worry, and we should all try to communicate these 5 simple principles to all who will listen.

Cafaro, P., and Crist, E. 2012. Life on the Brink: Environmentalists Confront Overpopulation. University of Georgia Press, Athens, Georgia. 342 pp. ISBN: 978-0-8203-4385-3

Daly, H.E., and Farley, J. 2011. Ecological Economics: Principles and Applications. 2nd ed. Island Press, Washington, D.C. 509 pp. ISBN: 978-1-5972-6681-9

Washington, H. 2015. Demystifying Sustainability: Towards Real Solutions. Routledge, New York. 222 pp. ISBN: 978-1138812697

What is Policy?

One seemingly popular way of muzzling scientists is to declare that they may not comment on issues that impact on government policy. In Canada and in Australia at the present time this kind of general rule seems to be enforced. It raises the serious issue of what is ‘policy’. In practice it appears that some scientific papers that discuss policy can pass the bar because they support the dominant economic paradigm of eternal growth or at least do not challenge it. But the science done by ecologists and environmental scientists often conflicts with current practices and thus confronts the economic paradigm.

There are several dictionary definitions of policy but the one most relevant to this discussion is:

“a high-level overall plan embracing the general goals and acceptable procedures especially of a governmental body”

The problem an ecologist faces is that in many countries this “high overall plan for the country” involves continuous economic growth, no limitations on the human population, the minimization of regulations regarding environmental pollution, and no long-term plan about climate change. But probably the largest area of conflict is over economic growth, and any ecological data that might restrict economic growth should be muzzled or at least severely edited.

This approach of governments is only partially effective because in general the government does not have the power to muzzle university scientists who can speak out on any topic, and this has been a comfort to ecologists and environmental scientists. But there are several indirect ways to muzzle these non-government scientists because the government controls some of the radio and TV media that must obtain funding from the federal budget, and the pressure of budget cuts unless ‘you toe the line’ works well. And the government also has indirect controls over research funding so that research that might uncover critical issues can be deemed less important than research that might increase the GNP. All of this serves the current economic paradigm of most of the developed countries.

Virtually all conservation biology research contains clear messages about policy issues, but these are typically so far removed from the day to day decisions made by governments that they can be safely ignored. A national park here or there seems to satisfy many voters who think these biodiversity problems are under control. But I would argue that all of conservation biology and indeed all of ecology is subversive to the dominant economic paradigm of our day so that everything we do has policy implications. If this is correct, telling scientists they may not comment on policy issues is effectively telling them not to do ecological or environmental science.

So we ecologists get along by keeping a minimal profile, a clear mistake at a time when more emphasis should be given to emerging environmental problems, especially long term issues that do not immediately affect voters. There is no major political party in power in North America or Australia that embraces in a serious way what might be called a green agenda for the future of the Earth.

The solution seems to be to convince the voters at large that the ecological world view is better than the economic world view and there are some signs of a slow move in this direction. The recent complete failure of economics as a reliable guide to government policy should start to move us in the right direction, and the recognition that inequality is destroying the social fabric is helpful. But movement is very slow.

Meanwhile ecologists must continue to question policies that are destroying the Earth. We can begin with fracking for oil and gas, and continue to highlight biodiversity losses driven by the growth of population and economic developments that continue the era of oil and natural gas. And keep asking when will we have a green President or Prime Minister?

Let me boil down my point of view. Everything scientists do has policy implications, so if scientists are muzzled by their government, it is a serious violation of democratic freedom of speech. And if a government pays no attention to the findings of science, it is condemning itself to oblivion in the future.

Davis, C., and Fisk, J.M. 2014. Energy abundance or environmental worries? Analyzing public support for fracking in the United States. Review of Policy Research 31(1): 1-16. doi: 10.1111/ropr.12048.

Mash, R., Minnaar, J., and Mash, B. 2014. Health and fracking: Should the medical profession be concerned? South African Medical Journal 104(5): 332-335. doi: 10.7196/SAMJ.7860.

Piketty, T. 2014. Capital in the Twenty-First Century. Belknap Press, Harvard University, Boston. 696 pp. ISBN 9780674430006

Stiglitz, J.E. 2012. The Price of Inequality. W.W. Norton and Company, New York.

 

Identifying the Most Critical Problems in Environmental Science

A common perception of government policy makers is that ecologists fritter around doing interesting tidbits that produce nice 7 second sound-bites for radio or TV, but they never address the most serious environmental problems that the government faces in environmental science. So the question we need to address for any developed nation is this – what are the most critical environmental problems that ecologists could help to address? Since most critical environmental problems are long-term, one constraint would be that goals have to be achieved in the short term so that people could see progress. There would be funding constraints but let us assume that if we hit the right buttons, funding would be plentiful (think military).

There is no question that not all countries would have the same detailed list of critical environmental problems. But there ought to be communalities so we ought to cast a wide, general net to define problems. Start with some clear ecological principles: there is only one Earth and we ought to take care of it with a time frame that follows the First Nations principle of ‘seven generations’, about 300 years, as our time horizon. We know the solution to some environmental problems but new ones are continually a challenge. We need in every country the equivalent of an Environmental Army monitoring environmental problems.

1. Food security. All populations need food yet modern agriculture violates many simple ecological rules. Is the system sustainable in the long term? Probably not so the first major problem is how might we move modern agriculture toward sustainability. Subheadings here abound – pest control and alternatives to poisons, biological control of insect pests, cultural pest control, soil fertility decline, quarantine control, the list goes on. Implicit in all this is a regulatory framework that prevents the introduction of new miracle agricultural practices without adequate ecological background checks. The neonicotinoids-and-bees problem immediately comes to mind. We must get away from the attitude of ‘do it now’ and ‘clean up the mess later’ when we find problems.

2. Pollution effects. This is the hard one because it is climate change in the long term which must be emphasized. But in the shorter term detailed measurements of air quality and harmful effects of smoke and diesel fumes among other things on human and animal health could give an immediacy to such a detailed research program. The same principle applies here – do not put something new out in the environment and ask questions later. Fracking for natural gas and oil comes to mind, as well as the whole recycling system. Electricity generation is a key driver and mining for carbon-based energy ought to be eliminated gradually.

3. Conservation. Could our country be the first on Earth to have a complete inventory of species in all the taxonomic groups? It is a scandal that we do not have a list of life on Earth, and we need to get this message across with clever advertising. Taxonomists ought to be more important than bankers and be paid accordingly. Again many subheadings here – endangered species problems, pest management interactions with agriculture, disease ecology (always a hot button), monitoring, monitoring interacting with citizen science where possible.

4. The Oceans. We ought to be responsible for the health of at least our near-shore ecosystems, and monitoring protocols should be established so that we have ecosystem health scores presented as frequently as stock market reports. As global citizens we should be contributing to studying global problems of the high seas, the Antarctic Continent, and acting together with other nations to solve global issues.

The advantage of all these 4 topics with respect to convincing a politician to fund them is that they are interdisciplinary and consequently can be addressed only by carefully selected teams of ecologists, physicians, molecular biologists, geologists, chemists, and social scientists. A call for research proposals in these areas would soon build teams of scientists to address the major issues of our time. Money can help glue together scientific teams.

All of this will cost a lot of money and our current political philosophy seems to be that environmental costs are the lowest priority, and taxes for protecting the environment should be as near zero as possible. This must change soon lest the Earth become a garbage can unfit for human habitation.

Dicks, L. et al. (2013). What do we need to know to enhance the environmental sustainability of agricultural production? A prioritisation of knowledge needs for the UK food system. Sustainability 5, 3095-3115.

Sutherland, W.J.,et al. (2010) The identification of priority policy options for UK nature conservation. Journal of Applied Ecology 47(5): 955-965.

The Common Good

Human society appears to thrive best when the governments of the day are guided by the common good. But what is the common good and how can we determine what actions are consistent with it? These are most difficult questions and the most controversial issues of the day involve human rights and obligations over issues like abortion rights. But the common good also describes many problems that are environmental, and ecologists have a right to assert the common good from their collective knowledge of how biodiversity operates to sustain life.

The common good is any action that benefits society as a whole, in contrast to benefiting the private good of individuals, sections of society, and corporations. It is a worthwhile exercise to look at the controversies and decisions made by governments in our time and judge whether they pass the litmus test of the common good. Just this week for example, the Canadian government has promoted regulations restricting the use of antibiotics in meat and poultry production because current indiscriminate use invites antibiotic resistance in bacteria that cause human diseases. Such a decision is a cost to livestock producers but a benefit to society. Since microbial ecologists have been suggesting such a restriction for more than 25 years, the only question left is why the common good was set aside of all these years.

The common good looks to the future while many of our governments do not. Climate change is an issue that ecologists have been discussing for more than 20 years with virtually no action from our governments, much talk, little action. In British Columbia at the moment there is a discussion about damming the Peace River at Site C for hydroelectricity. The justification for this is the common good that a growing population in BC will need more electricity, and this is pollution free electricity, what many ecologists have been requesting. But the price of this is a loss of good farmland and the disruption of river food chains. Is this plan to build a dam at Site C consistent with the common good? It might be if there is no alternative to the dam, and if indeed the power generated is for the people of BC rather than for mining companies that taxpayers subsidise. Would not the common good be better served by conservation of electricity use, the development of solar power, geothermal power, or wind power?

Conservation of biodiversity is a clear public issue where the common good is obvious. Implicit in the concept of the common good is the assumption that we will not take actions that imperil the future for our children and grandchildren. In conservation decision making ecologists play only a small role at present, but this was not always the case. Someone had the foresight to set aside parks and reserves long before ecology was taught in the schools, and governments at least appeared to operate for the common good. But now we see tendencies to define the common good as more export dollars for coal and gas and oil, so that pipelines can be permitted in national parks and reserves with few questions asked.

Money talks but people vote, and consequently it would be useful for ecologists as well as ordinary citizens to demand that our society define and follow the common good rather than the generation of wealth for the few and nothing for future generations.

Everard, M., B. Pontin, T. Appleby, C. Staddon, E. T. Hayes, J. H. Barnes, and J. W. S. Longhurst. 2013. Air as a common good. Environmental Science & Policy 33:354-368.

Sandel, M. J. 2012. What Money Can’t Buy: The Moral Limits of Markets. Farrar, Straus and Giroux, New York. 244 pp.

Sargent, R.-M. 2012. From Bacon to Banks: The vision and the realities of pursuing science for the common good. Studies in History and Philosophy of Science Part A 43:82-90.

Vineis, P. 2014. Public health and the common good. Journal of Epidemiology and Community Health 68:97-100.

Does Forestry in British Columbia Make Money?

While driving around British Columbia, one cannot help but notice the forestry industry – bare clear-cuts on the hills, logging trucks on the road. This simple observation leads me to this question: is the forest industry that now exists in BC profitable when one does a full-scale life-cycle analysis of its environmental impacts?

The answer to this question is obvious to most people – forestry is a good renewable-resource industry that provides many jobs and promotes economic growth. There is much literature from the government and the forest industry about how BC utilizes sustainable forestry. Most people accept this positive view of the forest industry. But I am concerned that we might find a different answer if we look behind the smoke screen of advertising and the government’s rosy view that all resource extraction industries are valuable for BC. Why might this be? I cannot analyse the economics of the forestry industry because I am not an economist, so in some sense all I would like to do here is ask some questions that others who are more qualified might help to answer.

The first question is what to include in such an analysis. If forestry is considered only trees, rather than the whole ecosystem with all its biodiversity, you would get one answer. If you worry about biodiversity you might get another answer (e.g. Drever 2000). If you worry about climate change and carbon dioxide dynamics, you can view forests as carbon stores that might be valuable if there is a price on carbon in the future. If you value the forests of BC as ecosystems that ought to be left as a legacy to our grandchildren, you might again take a different perspective. Do you include in your balance sheet the costs of fire-fighting and the government departments that manage the industry? What external costs are left out of a broad overview of forestry in BC?

At present it would appear to me that forest harvesting is not sustainable in BC, even if you take the narrow view that only trees matter in the calculations. If it were a sustainable industry, there would be no need to harvest old growth forests. But you could be certain that if any government actually said ‘no more cutting of old growth’, there would be an outcry. But if we continue as we are, we will cut our way to the North Pole, as long as we can find trees. The Yukon is next, if not now then for our grandchildren. But trees grow back again, so all will be well. Restoration ecology to the rescue. If you take a biodiversity perspective, you might find that what grows back is a pale imitation of what was there before. And if the ecosystem does restore, the time frame may be very long, looping back to the question of what sustainability means. If the forest ecosystem restores itself in 300 years, is that sustainable? How about 500 years?

If we treat forestry like any other agricultural enterprise, we might allocate some fraction of land to this activity and use the rest for recreation, tourism, and truly sustainable activities like berry picking. Suppose we planned that by 2020 forest companies could not cut anymore on crown land, and by that date land would be allocated to companies to purchase like any farmer would buy a farm. I can hear the howls of protest to such a suggestion. Is it correct that forestry then is really a mining industry operating on non-renewable resources – crown land that has old growth that belongs in theory to the people of BC in perpetuity? There are reports of how some forest companies are short-changing the government in their cutting practices because of the failure of inspection of the amount of wood taken off an area (e.g. see Parfitt, 2007) Short-changing the government is short-changing the people of the province and the people of the future who would live here.

But it seems to me that a much larger issue is that much of the planning for forestry in BC ignores the biodiversity issue. To be sure an iconic bird or plant might have some small areas saved for it, if it is included on the threatened species list. But as any ecologist might suggest, these protected areas are postage stamps that are in the long-term insufficient for the conservation of the species of concern. The major conservation issues of our day are those where economic growth produced by harvesting trees, natural gas, oil or coal collides directly with protecting our ecosystems for future generations. By any measure, the economic agenda wins the day, and the biodiversity agenda is peppered with good advertising telling us that all will be well.

It is fortunate that the First Nations of BC are rapidly awakening to these issues, and progress has been made in giving them more authority over their traditional lands. This is a bright side of the global issue of conservation in Canada.

The political issue that flows from this discussion is to ask how much subsidy our BC government provides to aid the exploitation of our natural resources, resources that ought to be managed for the future of the people of BC. Are we subsidizing environmental destruction with our tax dollars and all the while being told that even more economic growth is necessary? There must be another way, and for an ecologist concerned with biodiversity and the protection of the natural resources of our province, the current policies look like a Ponzi scheme.

Drever, R. 2000. A Cut Above: Ecological principles for sustainable forestry on BC’s coast. David Suzuki Foundation, Vancouver, B.C. ISBN 1-55054-689-9, Available at http://www.davidsuzuki.org/publications/reports/2000/a-cut-above-ecological-principles-for-sustainable-forestry-on-bcs-coast/

Parfitt, B. 2007. Over-cutting and Waste in B.C.’s Interior: A Call to Rethink B.C.’s Pine Beetle Logging Strategy. Canadian Centre for Policy Alternatives, Vancouver, BC. ISBN: 978-0-88627-533-4, available at www.policyalternatives.ca/BC f

The Conservative Agenda for Ecology

Many politicians that are conservative are true conservatives in the traditional meaning of the term. Many business people are conservative in the same way, and that is a good thing. But there exist in the world a set of conservatives that have a particularly destructive agenda based on a general belief that evidence, particularly scientific evidence, is not any more important as a basis for action than personal beliefs. Climate change is the example of the day, but there are many others from the utility of vaccinations for children, to items more to an ecologist’s interest like the value of biodiversity. In a sense this is a philosophical divide that is currently producing problems for ecologists in the countries I know most about, Canada and Australia, but possibly also in the USA and Britain.

The conservative political textbook says cut taxes and all will be well, especially for the rich and those in business, and then say ‘we have no money for ‘<fill in the blank here> ‘so we must cut funding to hospitals, schools, universities, and scientists’. The latest example I want to discuss is from the dismemberment of the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Australia by the current conservative government.

CSIRO was sent up in the 1950s to do research for the betterment of the people of Australia. Throughout the 1960s, 1970s and 1980s it was one of the world premier research organizations. If you do not believe this you can look at how many important papers, awards, and the occasional Nobel Prize came out of this organization. It had at this time perhaps 8500 employees in more than 25 Divisions. Divisions varied in size but in general they would have about 200-300 scientists and technicians. Divisions were run by a Chief who was a scientist and who decided the important directions for research in his or her area, whether it be horticulture, wildlife, energy technology, animal science, or mathematics and statistics. CSIRO itself was led by eminent scientists who provided some guidance to the Divisions but left the directions of science to the Chiefs and their scientists. It was a golden development for Australian science and a model for science that was appreciated all around the world.

This of course is dreamland in today’s world. So by the late 1980s the Australian federal government began determining scientific priorities for CSIRO. We know what science is important, the new leaders said, so do this. This would work well if it was not guided by politicians and MBAs who had no scientific training and knew nothing about science past or present. Piled on this were two neo-conservative philosophies. First, science is important only if it generates money for the economy. Coal mining triumphs wildlife research. Second, science in the public interest is not to be encouraged but cut. The public interest does not generate money. Why this change happened can be declared a mystery but it seemed to happen all around the western world in the same time frame. Perhaps it had something to do with scientific research that had the obvious message that one ought to do something about climate change or protecting biodiversity, things that would cost money and might curtail business practices.

Now with the current 2014 budget in Australia we have a clear statement of this approach to ecological science. The word from on high has come down within CSIRO that, because of cuts to their budget, one goal is as follows: “Reduce terrestrial biodiversity research (“reduced investment in terrestrial biodiversity with a particular focus on rationalising work currently conducted across the “Managing Species and Natural Ecosystems in a Changing Climate” theme and the “Building Resilient Australian Biodiversity Assets” theme in these Divisions”).Translated, this means about 20% of the staff involved in biodiversity research will be retrenched and work will continue in some areas at a reduced level. At a time when rapid climate change is starting, it boggles the mind that some people at some high levels think that supporting the coal and iron ore industry with government-funded research is more important than studies on biodiversity. (If you appreciate irony, this decision comes in a week when it is discovered that the largest coal company in Australia, mining coal on crown land, had profits of $16 billion last year and paid not one cent of tax.)

So perhaps all this illustrates that ecological research and all public interest research is rather low on the radar of importance in the political arena in comparison with subsidizing business. I should note that at the same time as these cuts are being implemented, CSIRO is also cutting agricultural research in Australia so biodiversity is not the only target. One could obtain similar statistics for the Canadian scene.

There is little any ecologist can do about this philosophy. If the public in general is getting more concerned about climate change, the simplest way to deal with this concern for a politician is to cut research in climate change so that no data are reported on the topic. The same can be said about biodiversity issues. There is too much bad news that the environmental sciences report, and the less information that is available to the public the better. This approach to the biosphere is not very encouraging for our grandchildren.

Perhaps our best approach is to infiltrate at the grass roots level in teaching, tweeting, voting, writing letters, and attending political meetings that permit some discussion of issues. Someday our political masters will realize that the quality of life is more important than the GDP, and we can being to worry more about the future of biodiversity in particular and science in general.

 

Krebs, C.J. 2013. “What good is a CSIRO division of wildlife research anyway?” In Science under Siege: Zoology under Threat, edited by Peter Banks, Daniel Lunney and Chris Dickman, pp. 5-8. Mosman, N.S.W.: Royal Zoological Society of New South Wales.

Oreskes, Naomi, and Erik M.M. Conway. 2010. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. New York: Bloomsbury Press. 355 pp. ISBN 978-1-59691-610-4

Shaw, Christopher. 2013. “Choosing a dangerous limit for climate change: Public representations of the decision making process.” Global Environmental Change 23 (2):563-571. doi: 10.1016/j.gloenvcha.2012.12.012.

Wilkinson, Todd. 1998. Science Under Siege: The Politicians’ War on Nature and Truth. Boulder, Colorado: Johnson Books. 364 pp. ISBN 1-55566-211-0