The science of wildlife management has moved from the good old days of worrying only about deer and ducks to the broader issues of conservation management of all species. But it operates in an impossible squeeze between human activities and wildlife responses. One key problem is the incremental creep of land use decisions. If we log half of the forest surely there is plenty left there for the wildlife to thrive, or so many people believe. So a central dilemma is habitat loss. The simple approach using ‘cow arithmetic’ says that if you have a farm one-third the size of what you have now, you will be able to have only one-third the number of cows. So habitat loss is critical but there seems to be no way of stopping it as long as the human population continues to expand.
To solve this problem we set up parks and reserves. That will please most of the botanists because if you have a plant species you are concerned about, you need set aside only a few hectares of land to keep it safe. This approach is at the core of wildlife management’s dilemma. You keep the plant species but lose the ecosystem. Certainly you can keep many of the small insects in a few hectares, so you protect not only the plant species but more of the biota. But you will lose all the birds and the larger species that need much larger areas of habitat. One of the defining moments in wildlife management and conservation ecology occurred when several ecologists recognized that even large national parks were not large enough for the charismatic megafauna.
Maybe we can rescue it all with metapopulations, islands of good habitat close enough to each other to permit dispersal. That will work in some cases and is a useful addition to the management arsenal of tools. But then we have to cope with additional problems – introduced pests and diseases that we may or may not be able to control, and global problems of air and water pollution that respect no neat geographic boundaries.
We cannot control species interactions so if we tinker with one aspect of the ecosystem, we find unintended consequences in another aspect of the ecosystem that we did not expect. We brought rabbits to Australia and to many islands with dire consequences no one seemed to anticipate. We also brought rats and pigs to island inadvertently with many well documented problems for bird and plants. We take predators away from ecosystems and then complain to the government that there are too may deer or Canada geese.
So part of the dilemma of wildlife management in the 21st century is that we do XYZ and then only later ask ecologists whether it was a good idea or not to do XYZ. Decisions are made by governments, companies, farmers, or city dwellers to change some element of the ecosystem without anyone asking a wildlife manager or an ecologist what the consequences might be. We love cats so we pass laws that prohibit managers from culling wild cats and only allow them to sterilize and release them. We love horses so we do the same. So wildlife management decisions are driven not by ecological studies and recommendations but by public demands and weak politicians. Wildlife management is thus a social science, with all the dilemmas generated when one part of society wishes to harvest seals and one part demands protection for seals.
Wildlife management has always been handicapped by the hunters and fishers who know everything about what management should be practiced. There is no need to have any professional training to decide management goals, management actions, and funding preferences for many of these people. I suppose we should at least be grateful that the same approach is not applied in medical science.
Wildlife management has always been a low priority activity, underfunded and moved more by political whims than by science. This is not at all the fault of all the excellent wildlife and fishery scientists who try their best to protect and manage our ecosystems. It is a victim of the constraints of making decisions on the spot about long term issues without the time or money to investigate the science necessary for knowledge of the consequences of our actions. The world changes slowly and if our memory is on the time span of 1-3 years, we are not on ecosystem time.
Much action must be spent on trying to restore ecosystems damaged by human activities. Restoration ecology recognizes that it is really partial restoration ecology because we cannot get back to the starting point. None of this is terribly new to ecologists or wildlife managers but it is good to keep it in mind as we get lost in the details of our daily chores.
Humans are destroying the earth in their quest for wealth, and simultaneously producing the problems of poverty and obesity. Led by politicians who do not lead and who do not seem to know what the problems of the Earth are, we keep a positive view of the scientific progress we generate, enjoy the existing beauty of biodiversity, and hope that the future will somehow cope with the changes we have set in motion.
“Humans, including ecologists, have a peculiar fascination with attempting to correct one ecological mistake with another, rather than removing the source of the problem”. (Schindler 1997, p. 4)
Estes, J.A. et al. 2011. Trophic downgrading of Planet Earth. Science 333:301-306.
Likens, G.E. 2010. The role of science in decision making: does evidence-based science drive environmental policy? Frontiers in Ecology and the Environment 8:e1-e9.
Newmark, W.D. 1985. Legal and biotic boundaries of Western North American National Parks: A problem of congruence. Biological Conservation 33:197-208.
Pauly, D. 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology and Evolution 10:430.
Schindler, D. W. 1997. Liming to restore acidified lakes and streams: a typical approach to restoring damaged ecosystems? Restoration Ecology 5:1-6.