Tag Archives: critical hypotheses

On Critical Questions in Biodiversity and Conservation Ecology

Biodiversity can be a vague concept with so many measurement variants to make one wonder what it is exactly, and how to incorporate ideas about biodiversity into scientific hypotheses. Even if we take the simplest concept of species richness as the operational measure, many questions arise about the importance of the rare species that make up most of the biodiversity but so little of the biomass. How can we proceed to a better understanding of this nebulous ecological concept that we continually put before the public as needing their attention?

Biodiversity conservation relies on community and ecosystem ecology for guidance on how to advance scientific understanding. A recent paper by Turkington and Harrower (2016) articulates this very clearly by laying out 7 general questions for analyzing community structure for conservation of biodiversity. As such these questions are a general model for community and ecosystem ecology approaches that are needed in this century. Thus it would pay to look at these 7 questions more closely and to read this new paper. Here is the list of 7 questions from the paper:

  1. How are natural communities structured?
  2. How does biodiversity determine the function of ecosystems?
  3. How does the loss of biodiversity alter the stability of ecosystems?
  4. How does the loss of biodiversity alter the integrity of ecosystems?
  5. Diversity and species composition
  6. How does the loss of species determine the ability of ecosystems to respond to disturbances?
  7. How does food web complexity and productivity influence the relative strength of trophic interactions and how do changes in trophic structure influence ecosystem function?

Turkington and Harrower (2016) note that each of these 7 questions can be asked in at least 5 different contexts in the biodiversity hotspots of China:

  1. How do the observed responses change across the 28 vegetation types in China?
  2. How do the observed responses change from the low productivity grasslands of the Qinghai Plateau to higher productivity grasslands in other parts of China?
  3. How do the observed responses change along a gradient in the intensity of human use or degradation?
  4. How long should an experiment be conducted given that the immediate results are seldom indicative of longer-term outcomes?
  5. How does the scale of the experiment influence treatment responses?

There are major problems in all of this as Turkington and Harrower (2016) and Bruelheide et al. (2014) have discussed. The first problem is to determine what the community is or what the bounds of an ecosystem are. This is a trivial issue according to community and ecosystem ecologists, and all one does is draw a circle around the particular area of interest for your study. But two points remain. Populations, communities, and ecosystems are open systems with no clear boundaries. In population ecology we can master this problem by analyses of movements and dispersal of individuals. On a short time scale plants in communities are fixed in position while their associated animals move on species-specific scales. Communities and ecosystems are not a unit but vary continuously in space and time, making their analysis difficult. The species present on 50 m2 are not the same as those on another plot 100 m or 1000 m away even if the vegetation types are labeled the same. So we replicate plots within what we define to be our community. If you are studying plant dynamics, you can experimentally place all plant species selected in defined plots in a pre-arranged configuration for your planting experiments, but you cannot do this with animals except in microcosms. All experiments are place specific, and if you consider climate change on a 100 year time scale, they are also time specific. We can hope that generality is strong and our conclusions will apply in 100 years but we do not know this now.

But we can do manipulative experiments, as these authors strongly recommend, and that brings a whole new set of problems, outlined for example in Bruelheide et al. (2014, Table 1, page 78) for a forestry experiment in southern China. Decisions about how many tree species to manipulate in what size of plots and what planting density to use are all potentially critical to the conclusions we reach. But it is the time frame of hypothesis testing that is the great unknown. All these studies must be long-term but whether this is 10 years or 50 years can only be found out in retrospect. Is it better to have, for example, forestry experiments around the world carried out with identical protocols, or to adopt a laissez faire approach with different designs since we have no idea yet of what design is best for answering these broad questions.

I suspect that this outline of the broad questions given in Turkington and Harrower (2016) is at least a 100 year agenda, and we need to be concerned how we can carry this forward in a world where funding of research questions has a 3 or 5 year time frame. The only possible way forward, until we win the Lottery, is for all researchers to carry out short term experiments on very specific hypotheses within this framework. So every graduate student thesis in experimental community and ecosystem ecology is important to achieving the goals outlined in these papers. Even if this 100 year time frame is optimistic and achievable, we can progress on a shorter time scale by a series of detailed experiments on small parts of the community or ecosystem at hand. I note that some of these broad questions listed above have been around for more than 50 years without being answered. If we redefine our objectives more precisely and do the kinds of experiments that these authors suggest we can move forward, not with the solution of grand ideas as much as with detailed experimental data on very precise questions about our chosen community. In this way we keep the long-range goal posts in view but concentrate on short-term manipulative experiments that are place and time specific.

This will not be easy. Birds are probably the best studied group of animals on Earth, and we now have many species that are changing in abundance dramatically over large spatial scales (e.g. http://www.stateofcanadasbirds.org/ ). I am sobered by asking avian ecologists why a particular species is declining or dramatically increasing. I never get a good answer, typically only a generally plausible idea, a hand waving explanation based on correlations that are not measured or well understood. Species recovery plans are often based on hunches rather than good data, with few of the key experiments of the type requested by Turkington and Harrower (2016). At the moment the world is changing rather faster than our understanding of these ecological interactions that tie species together in communities and ecosystems. We are walking when we need to be running, and even the Red Queen is not keeping up.

Bruelheide, H. et al. 2014. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89. doi: 10.1111/2041-210X.12126

Turkington, R. & Harrower, W.L. 2016. An experimental approach to addressing ecological questions related to the conservation of plant biodiversity in China. Plant Diversity, 38, 1-10. Available at: http://journal.kib.ac.cn/EN/volumn/current.shtml

Hypothesis testing using field data and experiments is definitely NOT a waste of time

At the ESA meeting in 2014 Greg Dwyer (University of Chicago) gave a talk titled “Trying to understand ecological data without mechanistic models is a waste of time.” This theme has recently been reiterated on Dynamic Ecology Jeremy Fox, Brian McGill and Megan Duffy’s blog (25 January 2016 https://dynamicecology.wordpress.com/2016/01/25/trying-to-understand-ecological-data-without-mechanistic-models-is-a-waste-of-time/).  Some immediate responses to this blog have been such things as “What is a mechanistic model?” “What about the use of inappropriate statistics to fit mechanistic models,” and “prediction vs. description from mechanistic models”.  All of these are relevant and interesting issues in interpreting the value of mechanistic models.

The biggest fallacy however in this blog post or at least the title of the blog post is the implication that field ecological data are collected in a vacuum.  Hypotheses are models, conceptual models, and it is only in the absence of hypotheses that trying to understand ecological data is a “waste of time”. Research proposals that fund field work demand testable hypotheses, and testing hypotheses advances science. Research using mechanistic models should also develop testable hypotheses, but mechanistic models are certainly are not the only route to hypothesis creation of testing.

Unfortunately, mechanistic models rarely identify how the robustness and generality of the model output could be tested from ecological data and often fail comprehensively to properly describe the many assumptions made in constructing the model. In fact, they are often presented as complete descriptions of the ecological relationships in question, and methods for model validation are not discussed. Sometimes modelling papers include blatantly unrealistic functions to simplify ecological processes, without exploring the sensitivity of results to the functions.

I can refer to my own area of research expertise, population cycles for an example here.  It is not enough for example to have a pattern of ups and downs with a 10-year periodicity to claim that the model is an acceptable representation of cyclic population dynamics of for example a forest lepidopteran or snowshoe hares. There are many ways to get cyclic dynamics in modeled systems. Scientific progress and understanding can only be made if the outcome of conceptual, mechanistic or statistical models define the hypotheses that could be tested and the experiments that could be conducted to support the acceptance, rejection or modification of the model and thus to inform understanding of natural systems.

How helpful are mechanistic models – the gypsy moth story

Given the implication of Dwyer’s blog post (or at least blog post title) that mechanistic models are the only way to ecological understanding, it is useful to look at models of gypsy moth dynamics, one of Greg’s areas of modeling expertise, with the view toward evaluating whether model assumptions are compatible with real-world data Dwyer et al.  2004  (http://www.nature.com/nature/journal/v430/n6997/abs/nature02569.html)

Although there has been considerable excellent work on gypsy moth over the years, long-term population data are lacking.  Population dynamics therefore are estimated by annual estimates of defoliation carried out by the US Forest Service in New England starting in 1924. These data show periods of non-cyclicity, two ten-year cycles (peaks in 1981 and 1991 that are used by Dwyer for comparison to modeled dynamics for a number of his mechanistic models) and harmonic 4-5 year cycles between 1943 and1979 and since the 1991 outbreak. Based on these data 10-year cycles are the exception not the rule for introduced populations of gypsy moth. Point 1. Many of the Dwyer mechanistic models were tested using the two outbreak periods and ignored over 20 years of subsequent defoliation data lacking 10-year cycles. Thus his results are limited in their generality.

As a further example a recent paper, Elderd et al. (2013)  (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773759/) explored the relationship between alternating long and short cycles of gypsy moth in oak dominated forests by speculating that inducible tannins in oaks modifies the interactions between gypsy moth larvae and viral infection. Although previous field experiments (D’Amico et al. 1998) http://onlinelibrary.wiley.com/doi/10.1890/0012-9658(1998)079%5b1104:FDDNAW%5d2.0.CO%3b2/abstract concluded that gypsy moth defoliation does not affect tannin levels sufficiently to influence viral infection, Elderd et al. (2013) proposed that induced tannins in red oak foliage reduces variation in viral infection levels and promotes shorter cycles. In this study, an experiment was conducted using jasmonic acid sprays to induce oak foliage. Point 2 This mechanistic model is based on experiments using artificially induced tannins as a mimic of insect damage inducing plant defenses. However, earlier fieldwork showed that foliage damage does not influence virus transmission and thus does not support the relevance of this mechanism.

In this model Elderd et al. (2013) use a linear relationship for viral transmission (transmission of infection on baculovirus density) based on two data points and the 0 intercept. In past mechanistic models and in a number of other systems the relationship between viral transmission and host density is nonlinear (D’Amico et al. 2005, http://onlinelibrary.wiley.com/doi/10.1111/j.0307-6946.2005.00697.x/abstract;jsessionid=D93D281ACD3F94AA86185EFF95AC5119.f02t02?userIsAuthenticated=false&deniedAccessCustomisedMessage= Fenton et al. 2002, http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2656.2002.00656.x/full). Point 3. Data are insufficient to accurately describe the viral transmission relationship used in the model.

Finally the Elderd et al. (2013) model considers two types of gypsy moth habitat – one composed of 43% oaks that are inducible and the other of 15% oaks and the remainder of the forest composition is in adjacent blocks of non-inducible pines. Data show that gypsy moth outbreaks are limited to areas with high frequencies of oaks. In mixed forests, pines are only fed on by later instars of moth larvae when oaks are defoliated. The pines would be interspersed amongst the oaks not in separate blocks as in the modeled population. Point 4.  Patterns of forest composition in the models that are crucial to the result are unrealistic and this makes the interpretation of the results impossible.

Point 5 and conclusion. Because it can be very difficult to critically review someone else’s mechanistic model as model assumptions are often hidden in supplementary material and hard to interpret, and because relationships used in models are often arbitrarily chosen and not based on available data, it could be easy to conclude that “mechanistic models are misleading and a waste of time”. But of course that wouldn’t be productive. So my final point is that closer collaboration between modelers and data collectors would be the best way to ensure that the models are reasonable and accurate representations of the data.  In this way understanding and realistic predictions would be advanced. Unfortunately the great push to publish high profile papers works against this collaboration and manuscripts of mechanistic models rarely include data savvy referees.

D’Amico, V., J. S. Elkinton, G. Dwyer, R. B. Willis, and M. E. Montgomery. 1998. Foliage damage does not affect within-season transmission of an insect virus. Ecology 79:1104-1110.

D’Amico, V. D., J. S. Elkinton, P. J.D., J. P. Buonaccorsi, and G. Dwyer. 2005. Pathogen clumping: an explanation for non-linear transmission of an insect virus. Ecological Entomology 30:383-390.

Dwyer, G., F. Dushoff, and S. H. Yee. 2004. The combined effects of pathogens and predators on insect outbreaks. Nature 430:341-345.

Elderd, B. D., B. J. Rehill, K. J. Haynes, and G. Dwyer. 2013. Induced plant defenses, host–pathogen interactions, and forest insect outbreaks. Proceedings of the National Academy of Sciences 110:14978-14983.

Fenton, A., J. P. Fairbairn, R. Norman, and P. J. Hudson. 2002. Parasite transmission: reconciling theory and reality. Journal of Animal Ecology 71:893-905.

A Survey of Strong Inference in Ecology Papers: Platt’s Test and Medawar’s Fraud Model

In 1897 Chamberlin wrote an article in the Journal of Geology on the method of multiple working hypotheses as a way of experimentally testing scientific ideas (Chamberlin 1897 reprinted in Science). Ecology was scarcely invented at that time and this has stimulated my quest here to see if current ecology journals subscribe to Chamberlin’s approach to science. Platt (1964) formalized this approach as “strong inference” and argued that it was the best way for science to progress rapidly. If this is the case (and some do not agree that this approach is suitable for ecology) then we might use this model to check now and then on the state of ecology via published papers.

I did a very small survey in the Journal of Animal Ecology for 2015. Most ecologists I hope would classify this as one of our leading journals. I asked the simple question of whether in the Introduction to each paper there were explicit hypotheses stated and explicit alternative hypotheses, and categorized each paper as ‘yes’ or ‘no’. There is certainly a problem here in that many papers stated a hypothesis or idea they wanted to investigate but never discussed what the alternative was, or indeed if there was an alternative hypothesis. As a potential set of covariates, I tallied how many times the word ‘hypothesis’ or ‘hypotheses’ occurred in each paper, as well as the word ‘test’, ‘prediction’, and ‘model’. Most ‘model’ and ‘test’ words were used in the context of statistical models or statistical tests of significance. Singular and plural forms of these words were all counted.

This is not a publication and I did not want to spend the rest of my life looking at all the other ecology journals and many issues, so I concentrated on the Journal of Animal Ecology, volume 84, issues 1 and 2 in 2015. I obtained these results for the 51 articles in these two issues: (number of times the word appeared per article, averaged over all articles)

Explicit hypothesis and alternative hypotheses

“Hypothesis”

“Test”

“Prediction”

“Model”

Yes

22%

Mean

3.1

7.9

6.5

32.5

No

78%

Median

1

6

4

20

No. articles

51

Range

0-23

0-37

0-27

0-163

There are lots of problems with a simple analysis like this and perhaps its utility may lie in stimulating a more sophisticated analysis of a wider variety of journals. It is certainly not a random sample of the ecology literature. But maybe it gives us a few insights into ecology 2015.

I found the results quite surprising in that many papers failed Platt’s Test for strong inference. Many papers stated hypotheses but failed to state alternative hypotheses. In some cases the implied alternative hypothesis is the now-discredited null hypothesis (Johnson 2002). One possible reason for the failure to state hypotheses clearly was discussed by Medawar many years ago (Howitt and Wilson 2014; Medawar 1963). He pointed out that most scientific papers were written backwards, analysing the data, finding out what it concluded, and then writing the introduction to the paper knowing the results to follow. A significant number of papers in these issues I have looked at here seem to have been written following Medawar’s “fraud model”.

But make of such data as you will, and I appreciate that many people write papers in a less formal style than Medawar or Platt would prefer. And many have alternative hypotheses in mind but do not write them down clearly. And perhaps many referees do not think we should be restricted to using the hypothetical deductive approach to science. All of these points of view should be discussed rather than ignored. I note that some ecological journals now turn back papers that have no clear statement of a hypothesis in the introduction to the submitted paper.

The word ‘model’ is the most common word to appear in this analysis, typically in the case of a statistical model evaluated by AIC kinds of statistics. And the word ‘test’ was most commonly used in statistical tests (‘t-test’) in a paper. Indeed virtually all of these paper overflow with statistical estimates of various kinds. Few however come back in the conclusions to state exactly what progress has been made by their paper and even less make statements about what should be done next. From this small survey there is considerable room for improvement in ecological publications.

Chamberlin, T.C. 1897. The method of multiple working hypotheses. Journal of Geology 5: 837-848 (reprinted in Science 148: 754-759 in 1965). doi:10.1126/science.148.3671.754

Howitt, S.M., and Wilson, A.N. 2014. Revisiting “Is the scientific paper a fraud?”. EMBO reports 15(5): 481-484. doi:10.1002/embr.201338302

Johnson, D.H. (2002) The role of hypothesis testing in wildlife science. Journal of Wildlife Management 66(2): 272-276. doi: 10.2307/3803159

Medawar, P.B. 1963. Is the scientific paper a fraud? In “The Threat and the Glory”. Edited by P.B. Medawar. Harper Collins, New York. pp. 228-233. (Reprinted by Harper Collins in 1990. ISBN: 9780060391126.)

Platt, J.R. 1964. Strong inference. Science 146: 347-353. doi:10.1126/science.146.3642.347

Is Ecology like Economics?

One statement in Thomas Piketty’s book on economics struck me as a possible description of ecology’s development. On page 32 he states:

“To put it bluntly, the discipline of economics has yet to get over its childish passion for mathematics and for purely theoretical and often highly ideological speculation at the expense of historical research and collaboration with the other social sciences. Economists are all too often preoccupied with petty mathematical problems of interest only to themselves. This obsession with mathematics is an easy way of acquiring the appearance of scientificity without having to answer the far more complex questions posed by the world we live in.”

If this is at least a partially correct summary of ecology’s history, we could argue that finally in the last 20 years ecology has begun to analyze the far more complex questions posed by the ecological world. But it does so with a background of oversimplified models, whether verbal or mathematical, that we are continually trying to fit our data into. Square pegs into round holes.

Part of this problem arises from the hierarchy of science in which physics and in particular mathematics are ranked as the ideals of science to which we should all strive. It is another verbal model of the science world constructed after the fact with little attention to the details of how physics and the other hard sciences have actually progressed over the past three centuries.

Sciences also rank high in the public mind when they provide humans with more gadgets and better cars and airplanes, so that technology and science are always confused. Physics led to engineering which led to all our modern gadgets and progress. Biology has assisted medicine in continually improving human health, and natural history has enriched our lives by raising our appreciation of biodiversity. But ecology has provided a less clearly articulated vision for humans with a new list of commandments that seem to inhibit economic ‘progress’. Much of what we find in conservation biology and wildlife management simply states the obvious that humans have made a terrible mess of life on Earth – extinctions, overharvesting, pollution of lakes and the ocean, and invasive weeds among other things. In some sense ecologists are like the priests of old, warning us that God or some spiritual force will punish us if we violate some commandments or regulations. In our case it is the Earth that suffers from poorly thought out human alterations, and, in a nutshell, CO2 is the new god that will indeed guarantee that the end is near. No one really wants to hear or believe this, if we accept the polls taken in North America.

So the bottom line for ecologists should be to concentrate on the complex questions posed by the biological world, and try first to understand the problems and second to suggest some way to solve them. Much easier said than done, as we can see from the current economic mess in what might be a sister science.

Piketty, T. 2014. Capital in the Twenty-First Century. Belknap Press, Harvard University, Boston. 696 pp. ISBN 9780674430006

Some Reflections on Evo-Eco

Some ecologists study evolutionary processes and we call them evolutionary ecologists. They have their own journals and are a thriving field of science. Other ecologists study populations, communities, and ecosystems in ecological time and do not in general concern themselves with evolutionary changes.The question is should they? Evo-Eco is a search for evolutionary changes that have a decisive impact on observable ecological changes like that of a collapsing bird population.

There are two schools of thought. The first is that evo-eco is very important and the changes that ecologists are trying to understand are partly caused by ecological mechanisms like predation and competition but are also associated with genetic changes that affect survival and reproduction. Consequently an ecologist studying the declining bird population should study both genetics and ecology. The second school of thought is that evo-eco is rarely of any importance in causing ecological changes, so that we can more or less ignore genetics if we wish to understand why this bird population is disappearing.

A practical problem immediately rears its head. To be safe we should all follow evo-eco in case genetics is involved in dynamics. But given the number of problems that ecologists face, the number of scientists available to analyse them, and the research dollars available it is rare to have the time, energy or money to take the comprehensive route. Conservation ecologists are perhaps the most tightly squeezed of all ecologists because they have no time to spare. Environmental managers request answers about what to do, and the immediate causes of conservation problems are (as everyone knows) habitat loss, introduced pests and diseases, and pollution.

The consequence of all this is that the two schools of thought drift apart. I cannot foresee any easy way to solve this issue. Progress in evolutionary ecology is often very slow and knowing the past rarely gives us much insight into predicting the human-affected future. Progress in conventional ecology is faster but our understanding is based on short-term studies of unknown generality for future events. Both schools of thought race along with mathematical models that may or may not tell us anything about the real world, but are conceptually elegant and in a pinch might be called progress if we had time to test them adequately.

The most useful evo-eco approach has been to look at human-caused selection via fishing for large sized fish or hunting for Dall sheep with the largest horns. The overuse of antibiotics for human sickness and as prophylactics for our farm animals is another classic case in which to understand the ecological dynamics we need to know the evolutionary changes that we humans have caused. These are clear cases in which genetic insights can teach us very much.

I end with a story from my past. In the 1950s, nearly 70 years ago now, Dennis Chitty working at Oxford on population fluctuations in small grassland rodents considered that he could reject most of the conventional explanations for animal population changes, and he suggested that individuals might change in quality with population density. This change he thought might involve genetic selection for traits that were favourable only in high density populations that reappeared every 3-4 years. So in some strange sense he was one of the earliest evo-eco ecologists. The result was that he was nearly laughed out of Oxford by the geneticists in control. The great evolutionary geneticist E.B. Ford told Chitty he was completely mad to think that short term selection was possible on a scale to impact population dynamics. Genetic changes took dozens to hundreds of years at the best of time. There were of course in the 1950s only the most primitive of genetic methods available for mammals that all look the same in their coat colour, and the idea that changes in animal behaviour involving territoriality might cause genetic shifts on a short-term period gradually lost favour. Few now think that Chitty was right in being evo-eco, but in some sense he was ahead of his time in thinking that natural selection might operate quickly in field populations. Given the many physiological and behavioural changes that can occur phenotypically in mammals, most subsequent work on grassland rodents has become buried in mechanisms that do not change because of genetic selection.

When we try to sort out whether to be concerned about evo-eco, we must strike a compromise between what the exact question is that we are trying to investigate, and how we can best construct a decision tree that can operate in real time with results that are useful for the research question. Not every ecological problem can be solved by sequencing the study organism.

Chitty, D. 1960. Population processes in the vole and their relevance to general theory. Canadian Journal of Zoology 38:99-113.

On Important Questions in Ecology

There is a most interesting paper that you should read about the important questions in ecology:

Sutherland, W.J. et al. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67.

This paper represents the views of 388 ecologists who culled through all of the 754 questions submitted and vetted in a two day workshop in London in April 2012. There are many thesis topics highlighted in this list and it gives a good overview of what many ecologists think is important. But there are some problems with this approach that you might wish to consider after you read this paper.

We can begin with a relatively trivial point. The title indicates that it will discuss ‘fundamental’ questions in ecology but the Summary changes this to ‘important’ questions. To be sure the authors recognize that what we now think is ‘important’ may be judged in the future to be less than important, so in a sense they recognize this problem. ‘Important’ is not an operational word in science, and consequently it is always a focus for endless argument. But let us not get involved with semantics and look at the actual 100 questions.

As I read the paper I was reminded of the discussion in Peters (1991, p. 13) who had the audacity to point out that academic ecologists thrived on unanswerable questions. In particular Peters (1991) focused on ‘why’ questions as being high on the list of unanswerable ones, and it is good to see that there are only 2 questions out of 100 that have a ‘why’ in them. Most of the questions posed are ‘how’ questions (about 65 instances) and ‘what’ questions (about 52 instances).

In framing questions in any science there is a fine line in the continuum of very broad questions that define an agenda and at the other extreme to very specific questions about one species or community. With very broad questions there will never be a clear point at which we can say that we have answered that question so we can move on. With very specific questions we can answer them experimentally and move on. So where do we cut the cake of questions? Most of these 100 questions are very broad and so they both illuminate and frustrate me because they cannot be answered without making them more specific.

Let me go over just one example. Question 11 What are the evolutionary and ecological mechanisms that govern species’ range margins? First, we might note that this question goes back at least 138 years to Alfred Wallace (1876, The Geographical Distribution of Animals), and has been repeated in many ecology textbooks ever since. There are few organisms for which it has been answered and very much speculation about it. At the moment the ecological mechanism in favour is ‘climate’. This is a question that can be answered ecologically only for particular species, and cannot be answered in real (human) time for the evolutionary mechanisms. Consequently it is an area rife for correlational ecology whose conclusions could possibly be tested in a hundred years if not longer. All of these problems should not stand in the way of doing studies on range margins, and there are many hundreds of papers that attest to this conclusion. My question is when will we know that we have answered this question, and my answer is never. We can in some cases use paleoecology to get at these issues, and then extrapolate that the future will be like the past, a most dubious assumption. My concern is that if we have not answered this question in 138 years, what is the hope that we will answer it now?

It is good to be optimistic about the future development of ecological science. Perhaps I have picked a poor example from the list of 100 questions, and my concern is that in this case at least this is not a question that I would suggest to a new PhD student. Still I am glad to have this list set out so clearly and perhaps the next step would be to write a synthesis paper on each of the 100 topics and discuss how much progress has been made on that particular issue, and what exactly we might do to answer the question more rapidly. How can we avoid in ecology what Cox (2007) called a “yawning abyss of vacuous generalities”?

Cox, D. R. (2007) Applied statistics: A review. Annals of Applied Statistics, 1, 1-16.

Peters, R. H. (1991) A Critique for Ecology, Cambridge University Press, Cambridge, England.

Sutherland, W. J., Freckleton, R. P., Godfray, H. C. J., Beissinger, S. R., Benton, T., Cameron, D. D., Carmel, Y., Coomes, D. A., Coulson, T., Emmerson, M. C., Hails, R. S., Hays, G. C., Hodgson, D. J., Hutchings, M. J., Johnson, D., Jones, J. P. G., Keeling, M. J., Kokko, H., Kunin, W. E. & Lambin, X. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67.

Two Visions of Ecological Research

Let us assume for the moment that the goal of scientific ecology is to understand the reasons for changes in the distribution and abundance of animals, plants, and microbes. If you do not think this is our main agenda, perhaps you should not read further.

The conventional, old paradigm to achieve this goal is to obtain a good description of the natural history of the organisms of interest in a population or community, define the food web they operate within, and then determine by observations or manipulations the parameters that limit its distribution and abundance. This can be difficult to achieve in rich food webs with many species, and in systems in which the species are not yet taxonomically described, and particularly in microbe communities. Consequently a prerequisite of this paradigm is to have good taxonomy and to be able to recognize species X versus species Y. A whole variety of techniques can be used for this taxonomy, including morphology (the traditional approach) and genetics. Using this approach ecologists over the past 90 years have made much progress in deriving some tentative explanations for the changes that occur in populations and communities. If there has been a problem with this approach, it is largely because of disagreements about what data are sufficient to test hypothesis X, and whether the results of manipulation Y are convincing. A great deal of the accumulated data obtained with this approach has been useful to fisheries management, wildlife management, pest control, and agricultural production.

The new metagenomics paradigm, to use one label, suggests that this old approach is not getting us anywhere fast enough for microbial communities, and we need to forget most of this nonsense and get into sequencing, particularly for microbial communities. New improvements in the speed of doing this work makes it feasible. The question I wish to address here is not the validity or the great improvements in genetic analysis, but rather whether or not this approach can replace the conventional old paradigm. I appreciate that if we grab a sample of mud, water, or the bugs in an insect trap and grind it all up, and run it through these amazing sequencing machines, we get a very great amount of data. We then might try to associate some of these kinds of data with particular ‘species’ and this may well work in groups for which the morphological species are well described. But what do we do about the undescribed sequences? We know that microbial diversity is much higher than what we can currently culture in the laboratory. We can make rules about what to call unknown unit A, unknown unit B, and so on. That is fine, but now what? We are in some sense back where Linnaeus was in 1753 in giving names to plants.

Now comes the difficult bit. Do we just take the metagenomics approach and tack it on to the conventional approach, using unknown A, unknown B, etc. instead of Pseudomonas flavescens or Bacillus licheniformis? We cannot get very far this way because the first thing we need to decide is does unknown A a primary producer or unknown B a decomposer of complex organic molecules? So perhaps this leads us to invent a whole new taxonomy to replace the old one. But perhaps we will go another way to say we will answer questions with the new system like is this pond ecosystem changing in response to global warming or nutrient additions? We can describe many system shifts in DNA-terminology but will we have any knowledge of what they mean or how management might change these trends? We could work all this out in the long term I presume. So I guess my confusion is largely exactly which set of hypotheses are you going to test with the new metagenomics paradigm? I can see a great deal of alpha-descriptive information being captured but I am not sure where to go from there. My challenge to the developers of the new paradigm is to list a set of problems in the Earth’s ecosystems for which this new paradigm could provide better answers more quickly than the old approach.

Microbial ecology is certainly much more difficult to carry out than traditional ecology on macroscopic animals and plants. As such it should be able to use new technology that can improve understanding of the structure and function of microbe communities. All new advances in technology are helpful for solving some ecological problems and should be so used. The suggestion that the conventional approach is out of date should certainly be entertained but in the last 70 years the development of air photos, of radio telemetry, of satellite imagery, of electrophoresis, of simplified chemical analyses, of automated weather stations, and the new possibilities of genetic analysis have been most valuable to solving ecological questions for many of our larger species. But in every case, at every step we should be more careful to ask exactly what questions the new technology can answer. Piling up terabytes of data is not science and could in fact hinder science. We do not wish to validate the Rutherford prediction that our ecological science is “stamp collecting”.

10 Limitations on Progress in Ecology

Ecological science moves along slowly in its mission to understand how the Earth’s populations, communities, and ecosystems operate within the constraints of human impacts on the Biosphere. The question of the day is can we identify the factors currently limiting the rate of progress so that at least in principle we could speed up progress in our science. Here is my list.

1. A shortage of ecologists or more properly jobs for ecologists. In particular a scarcity of government agencies employing ecologists in secure jobs to work on stable, long-term environmental projects that are beyond the scope of university scientists. Many young ecologists of high quality are stalled in positions that are beneath their talents. We are in a situation similar to having highly trained medical doctors being used as hospital janitors. This is a massive failure on many fronts, regional and national, political and scientific. Many governments around the world think economists and lawyers are key while environmental scientists are superfluous.

2. The lack of proper funding from both government, private companies and private individuals. This is typified by the continual downsizing of government scientists working on natural resource problems – fisheries, wildlife, park management – and continuing political interference with scientific objectives. Private companies too often rely on taxpayers to fund their environmental investigations and do not view them as a part of their business model. Private citizens give money to medical research rather than to environmental programs largely based on the belief that of all the life on Earth, only the human component is important.

3. The deficiency of taxonomic expertise to define clearly the species that inhabit the Earth. The estimates vary but perhaps only 10% of the total biota can be given a Latin name and morphological description, leaving out for the moment all the bacteria and viruses. Equate this with having a batch of various shaped coins in your pocket with only a few of them giving the denomination. This problem has been identified for years with little action.

4. Given adequate taxonomy, the lack of adequate natural history data on most of the biota. This activity, so critical for all ecological science, was called “stamp collecting” and thus condemned to the lowest point on the scientific totem pole. The consequence of this is that we try to understand the Earth with data only on butterflies, some birds, and some large mammals.

5. A failure of ecologists to map out the critical questions facing natural populations, communities, and ecosystems on Earth. The roadmap of ecology is littered with wrecks of ideas once pushed to explain nearly everything, and we need a more nuanced map of what is a critical issue. There are a considerable number of fractures within the ecological discipline about what needs to be done, if people and money were available. This fosters the culture of I win = you lose in competition for money and jobs.

6. The confusion of mathematical models with reality. There is a strong disconnect between models and data that persists. Models rapidly proliferate, data are slow to accumulate, so we try to paper over the fragility of our understanding with mathematical wizardry, trying to be like physicists. Connecting model predictions with empirical data studies would go a long way to righting this problem but it is a tall order in a world that confuses the number of publications and h scores with important contributions.

7 The fact that too many ecologists do not adopt the scientific method of investigation, to carry out experiments with multiple alternative hypotheses with clear predictions. Arguments continue endlessly based on words (‘concepts’) that are so vaguely defined as to be meaningless operationally. If you need an example, think ‘stability’ or ‘diversity’. These vague words are then herded into pseudo-hypotheses to doubly confound the confusion over what the critical questions in ecology really are.

8. The need for ecologists to work in stable groups. Serious ecological problems demand expertise in many scientific specialities, and we need better mechanisms to foster and maintain such groups. The assessment of scientists on the basis of individual work is long out of date, the Nobel Prize is an anachronism, and we need strong groups concentrating on important issues for long term studies. At the moment many groups exist to do meta-analyses and fewer to do science.

9. Placing the technological horse in front of the ecological cart. Ecology like many sciences is often led by technology rather than by questions. The current DNA bandwagon is one example, but we should not get so confused to think that that most important questions in ecology are those that use the most technology. Jumping from one technological bandwagon to the next is a good recipe for minimizing progress.

10. The fractionation of ecology into subdisciplines and the assumption that the only important research work has been done since 2000. Aquatic ecologists do not talk to terrestrial ecologists, microbial ecologists live in their own special world, and avian ecologists do not talk to insect ecologists. The result is that the existing literature is too often wasted by investigators who have no idea that question XX has already been answered either in another subdiscipline or in existing literature from 50 years ago.

Not all of these limitations apply to every ecologist, and at best I would view them as a set of guideposts that need to be considered as we move further into the 21st century.

Krebs, C. J. 2006. Ecology after 100 years: progress and pseudo-progress. New Zealand Journal of Ecology 30:3-11.

Majer, J. D. 2012. Critical times: How has ecological research responded over the past 35 years? Austral Ecology 37:149-152.

Sutherland, W. J. et al. 2010. A horizon scan of global conservation issues for 2010. Trends in Ecology & Evolution 25:1-7.