Category Archives: History of Ecology

The Ecological Outlook

There is an extensive literature on ecological traps going back two decades (e.g. Schlaepfer et al. 2002, Kristan 2003, Battin 2004) discussing the consequences of particular species selecting a habitat for breeding that is now unsuitable. A good example is discussed in Lamb et al. (2017) for grizzly bears in southeastern British Columbia in areas of high human contact. The ecological trap hypothesis has for the most part been discussed in relation to species threatened by human developments with some examples of whole ecosystems and human disturbances (e.g. Lindenmayer and Taylor 2020). The concept of an ecological trap can be applied to the Whole Earth Ecosystem, as has been detailed in the IPCC 2022 reports and it is this global ecological trap that I wish to discuss.

The key question for ecologists concerned about global biodiversity is how much biodiversity will be left after the next century of human disturbances. The ecological outlook is grim as you can hear every day on the media. The global community of ecologists can ameliorate biodiversity loss but cannot stop it except on a very local scale. The ecological problem operates on a century time scale, just the same as the political and social change required to escape the global ecological trap. E.O. Wilson (2016) wrote passionately about our need to set aside half of the Earth for biodiversity. Alas, this was not to be. Dinerstein et al. (2019) reduced the target to 30% in the “30 by 30” initiative, subsequently endorsed by 100 countries by 2022. Although a noble political target, there is no scientific evidence that 30 by 30 will protect the world’s biodiversity. Saunders et al. (2023) determined that for North America only a small percentage of refugia (5– 14% in Mexico, 4–10% in Canada, and 2–6% in the USA) are currently protected under four possible warming scenarios ranging from +1.5⁰C to +4⁰C. And beyond +2⁰C refugia will be valuable only if they are at high latitudes and high elevations.

The problem as many people have stated is that we are marching into an ecological trap of the greatest dimension. A combination of global climate change and continually increasing human populations and impacts are the main driving factors, neither of which are under the control of the ecological community. What ecologists and conservationists can do is work on the social-political front to protect more areas and keep analysing the dynamics of declining species in local areas. We confront major political and social obstacles in conservation ecology, but we can increase our efforts to describe how organisms interact in natural ecosystems and how we can reduce undesirable declines in populations. All this requires much more monitoring of how ecosystems are changing on a local level and depends on how successful we can be as scientists to diagnose and solve the ecological components of ecosystem collapse.

As with all serious problems we advance by looking clearly into what we can do in the future based on what we have learned in the past. And we must recognize that these problems are multi-generational and will not be solved in any one person’s lifetime. So, as we continue to march into the ultimate ecological trap, we must rally to recognize the trap and use strong policies to reverse its adverse effects on biodiversity and ultimately to humans themselves. None of us can opt out of this challenge.

There is much need in this dilemma for good science, for good ecology, and for good education on what will reverse the continuing degradation of our planet Earth. Every bit counts. Every Greta Thunberg counts.

Battin, J. (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conservation Biology, 18, 1482-1491.

Dinerstein, E., Vynne, C., Sala, E., et al. (2019) A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 5, eaaw2869.doi: 10.1126/sciadv.aaw2869..

IPCC, 2022b. In: Skea, J., Shukla, P.R., et al. (Eds.), Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of theIntergovernmental Panel on Climate Change. Cambridge University Press. doi: www.ipcc.ch/report/ar6/wg3/.

Kristan III, W.B. (2003) The role of habitat selection behavior in population dynamics: source–sink systems and ecological traps. Oikos, 103, 457-468.

Lamb, C.T., Mowat, G., McLellan, B.N., Nielsen, S.E. & Boutin, S. (2017) Forbidden fruit: human settlement and abundant fruit create an ecological trap for an apex omnivore. Journal of Animal Ecology, 86, 55-65. doi. 10.1111/1365-2656.12589.

Lindenmayer, D.B. and Taylor, C. (2020) New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proceedings of the National Academy of Sciences 117, 12481-124485. doi. 10.1073/pnas.2002269117.

Saunders, S.P., Grand, J., Bateman, B.L., Meek, M., Wilsey, C.B., Forstenhaeusler, N., Graham, E., Warren, R. & Price, J. (2023) Integrating climate-change refugia into 30 by 30 conservation planning in North America. Frontiers in Ecology and the Environment, 21, 77-84. doi. 10.1002/fee.2592.

Schlaepfer, M.A., Runge, M.C. & Sherman, P.W. (2002) Ecological and evolutionary traps. Trends in Ecology & Evolution, 17, 474-480.

Wilson, E.O. (2016) Half-Earth: Our Planet’s Fight for Life. Liveright, New York. ISBN: 978-1-63149-252-5.

The Five Stages of Conservation

While listening to the reports on the COP 15 meeting in Montreal I began thinking that one way to look at conservation science and action is to think of it in 5 stages. So I decided to put out this discussion of how we might view all the conservation news.

Stage 1: Recognize the Issue

The most important issue is to make both scientists and the general public aware that there is a large problem with the conservation of the Earth’s biota. We start with having to convince all that biodiversity does not mean dangerous animals and plants. This stage would be simple for anyone who has taken a good biology course in school, but we still find that some people fear the “environment” because it is synonymous with spiders and alligators and bears and wolves. One might think that children’s books involving cute or anthropomorphised animals would make them less susceptible to this worry, but this does not work for all who have read “The Big Bad Wolf” and Little Red Riding Hood. So education about animals and plants should begin to point everyone toward conservation.

Stage 2: Become Concerned

People see that animals die from a great array of problems, and this connects to the human world where people get ill and pass away or become injured in a car accident. Depending on what their interest is, concern about this leads to interventions such as the feeding of birds and other wildlife on the assumption that they cannot take care of themselves. These worries generate a concern in many to protect wildlife on the unfounded assumption that without human interference, all would disappear.

Stage 3: Demand Action

By this stage wildlife and fishery scientists have begun doing many excellent studies on how some populations of wildlife are in serious trouble. The crux at this point is that often the origin of these problems are human actions in cutting down forests, clearing land for agriculture and housing, and polluting the general environment. The problem is people do things related to “progress” and then find it is killing wildlife. If you need an example, think DDT or seismic lines. The public grows more aware and demands conservation action. These demands are translated into small amounts of government action with large amounts of publicity.

Stage 4: Achieve Action

The consequences of the human exploitation of the earth’s resources begins to bite, largely driven by climate emergencies. Much pressure from NGOs and even business people starts to result in action. Wildlife and fisheries agencies make progress but almost always on the scale of single species management often constrained by state or provincial boundaries. Who is in charge of this mess? Biodiversity becomes the cry of the age, and even the New York Times begins to realize that the Earth consists of more than human beings. But while there is more talk, there is less understanding because of the shouting of people who know very little about these conservation issues and how tangled they are. It is important to appear to be on the side of the angels, so progress is slower than one would like.

Stage 5: Understand the Problem

We have barely entered this stage. To be sure ecologists have been at this Stage for many years with reasonable understanding of how to ameliorate conservation problems, but still too few powers that be are convinced, so that we continue to provide subsidies to oil and gas companies that are busy destroying the earth. Subsidies can go in good or bad directions, but few of us can comprehend the volumes of money being committed to subsidies in all directions. We hear promises to achieve X by 2030, and Y by 2050, and still we believe these when we can just look up and see that few of the promises of the last 30 years have been achieved. Few beyond ecologists understand that it is communities and ecosystems that must be protected but almost all our conservation efforts now operate on single species of ecological beauty. Think rhinos.

One hopes for Stage 6 to come to be, but only a small sign of that progress is so far in sight. If only we could convince everyone that conservation issues ought to be treated with the urgency and the funding that COVID has obtained, we could press ahead with more serious conservation objectives. But it is more than declaring that we should protect 30% of our wild areas. Even if we can achieve the 30% goal in the next 8 years, it is but a start toward understanding the stewardship of the Earth if we do not know how the machinery of nature works. Alas, it is a long road ahead being driven by humans who are short-sighted. Can we avoid Plus ça change?

On Ecological Imperialism

It is well known among ecologists that there are more species of almost everything in the tropical regions, and it is also well known that there is rather much more research in the ecosystems of the temperate zone. A recent note in Science 379 (6632) – 8 Feb. 2023 highlights the problems faced by ornithologists in Latin America and the Caribbean trying to carry out research on their local birds. The details are in two papers now published (Soares et al. 2023, Ruelas Inzunza et al. 2023). Both of these papers are a response to a review paper published in 2020 (Lees et al. 2020) which discussed how much was not known about birds in Latin America, but which ignored most of the contributions of Latin American scientists. The red flag arose in part because all the authors of the 2020 paper were based at universities either in the United States or in the United Kingdom. The central criticisms were that the 2020 paper perpetuated an elitist, exclusionary, “northern” approach that has overlooked the knowledge produced by Latin American experts and Indigenous people, partly because these papers were not in English.

    Their case is certainly important and should be a call-to-arms but it should be read with a few minor qualifications. It is certainly not valid to ignore local knowledge both of scientists and indigenous peoples. But this has been going on now for more than 200 years in all areas of biological science, not that history justifies these barriers. Alas Charles Darwin would fall under the knife of this criticism. The funding for ecological research is higher in most European countries as well as North America compared with tropical countries. So we are dealing with economic issues that underlie the scientific funding that is less in Latin America in addition to the global problem that too many governments prefer guns to butter. We recognize these problems, but we can do nothing immediately about them.

    The language issue is much more difficult because it is so clear. There is a long history of this conflict in scientific papers as well as in literature in general. French scientists years ago refused to publish in English, that has changed. Chinese scientists were all educated in Russian but when the tide turned they learned English and started to write scientific papers in English. The problem revolves back to the education system of North American schools that seem to operate on the assumption that to learn a foreign language is very close to being a traitor. Alas students hardly learn to speak and write English but that is another social issue. I think many northern scientists have helped Latin America scientists to assist them in English usage, so it is to me quite obscene to think that someone has a business charging people $600 for a translation. So much of the complaint in the predominance of English scientific papers arises from social issues that are difficult to overcome.

    In the end I am very sympathetic with the inequities raised in these papers and the desire to move forward on all these issues. Ironically the skeleton of the Lees et al. (2020) paper is an excellent roadmap for the analysis of any taxonomic group anywhere is the world, and these papers should be a reminder that similar reviews should be more inclusive of all published literature. Remember always that European or American knowledge is not the only or the best knowledge.

Lees, A.C., Rosenberg, K.V., Ruiz-Gutierrez, V., Marsden, S., Schulenberg, T.S. & Rodewald, A.D. (2020) A roadmap to identifying and filling shortfalls in Neotropical ornithology. Auk, 137, 1-17. doi: 10.1093/auk/ukaa048.

Ruelas Inzunza, E., Cockle, K.L., Núñez Montellano, M.G., Fontana, C.S., Cuatianquiz Lima, C., Echeverry-Galvis, M.A., Fernández-Gómez, R.A., Montaño-Centellas, F.A., Bonaccorso, E., Lambertucci, S.A., Cornelius, C., Bosque, C., Bugoni, L., Salinas-Melgoza, A., Renton, K., Freile, J.F., Angulo, F., Mugica Valdés, L., Velarde, E., Cuadros, S. & Miño, C.I. (2023) How to include and recognize the work of ornithologists based in the Neotropics: Fourteen actions for Ornithological Applications, Ornithology, and other global-scope journals. Ornithological Applications, 125, duac047. doi: 10.1093/ornithapp/duac047.

Soares, L., Cockle, K.L., Ruelas Inzunza, E., Ibarra, J.T., Miño, C.I., Zuluaga, S., Bonaccorso, E., Ríos-Orjuela, J.C., Montaño-Centellas, F.A., Freile, J.F., Echeverry-Galvis, M.A., Bonaparte, E.B., Diele-Viegas, L.M., Speziale, K., Cabrera-Cruz, S.A., Acevedo-Charry, O., Velarde, E., Cuatianquiz Lima, C., Ojeda, V.S., Fontana, C.S., Echeverri, A., Lambertucci, S.A., Macedo, R.H., Esquivel, A., Latta, S.C., Ruvalcaba-Ortega, I., Alves, M.A.S., Santiago-Alarcon, D., Bodrati, A., González-García, F., Fariña, N., Martínez-Gómez, J.E., Ortega-Álvarez, R., Núñez Montellano, M.G., Ribas, C.C., Bosque, C., Di Giacomo, A.S., Areta, J.I., Emer, C., Mugica Valdés, L., González, C., Rebollo, M.E., Mangini, G., Lara, C., Pizarro, J.C., Cueto, V.R., Bolaños-Sittler, P.R., Ornelas, J.F., Acosta, M., Cenizo, M., Marini, M.Â., Vázquez-Reyes, L.D., González-Oreja, J.A., Bugoni, L., Quiroga, M., Ferretti, V., Manica, L.T., Grande, J.M., Rodríguez-Gómez, F., Diaz, S., Büttner, N., Mentesana, L., Campos-Cerqueira, M., López, F.G., Guaraldo, A.C., MacGregor-Fors, I., Aguiar-Silva, F.H., Miyaki, C.Y., Ippi, S., Mérida, E., Kopuchian, C., Cornelius, C., Enríquez, P.L., Ocampo-Peñuela, N., Renton, K., Salazar, J.C., Sandoval, L., Correa Sandoval, J., Astudillo, P.X., Davis, A.O., Cantero, N., Ocampo, D., Marin Gomez, O.H., Borges, S.H., Cordoba-Cordoba, S., Pietrek, A.G., de Araújo, C.B., Fernández, G., de la Cueva, H., Guimarães Capurucho, J.M., Gutiérrez-Ramos, N.A., Ferreira, A., Costa, L.M., Soldatini, C., Madden, H.M., Santillán, M.A., Jiménez-Uzcátegui, G., Jordan, E.A., Freitas, G.H.S., Pulgarin-R, P.C., Almazán-Núñez, R.C., Altamirano, T., Gomez, M.R., Velazquez, M.C., Irala, R., Gandoy, F.A., Trigueros, A.C., Ferreyra, C.A., Albores-Barajas, Y.V., Tellkamp, M., Oliveira, C.D., Weiler, A., Arizmendi, M.d.C., Tossas, A.G., Zarza, R., Serra, G., Villegas-Patraca, R., Di Sallo, F.G., Valentim, C., Noriega, J.I., Alayon García, G., de la Peña, M.R., Fraga, R.M. & Martins, P.V.R. (2023) Neotropical ornithology: Reckoning with historical assumptions, removing systemic barriers, and reimagining the future. Ornithological Applications, 125, duac046. doi: 10.1093/ornithapp/duac046.

How to Destroy a Research Station

I have had the ‘privilege’ over the last 60 years of watching three ecological field stations be destroyed. Admittedly this is a small sample, against which every ecologist can complain, but I wanted to present to you my list of how to achieve this kind of destruction should you ever be commanded to do so. I will not name names or specific places, since the aim is to develop a general theory rather than to name and pillory specific historical actions and people. I suggest that nine rules are needed to proceed smoothly in this matter if you are given this job.

  1.  Have a clear vision why you wish to destroy an existing station. Do not vacillate. The background may be money, or philosophy of science, or orders from those higher in the echelon, or a personal peeve. Remember you are an administrator, and no one can challenge your wisdom in making major changes or closing the station.  
  2. Speak to none of the current users of the research station. If the research station has a Users Committee, avoid talking to them until after all the decisions are made. A users committee is just an honorary appointment, and it helps if very few of the users are actually people who do research at the station. It is very important that your vision should not be clouded by personnel or research programs currently running at the station. And it is best if the scientists using the station have no information except gossip about the changes that are coming.
  3. Avoid loose talk around your office. If you or your group are paying a visit in the field to the research station before closing it or repositioning its purpose, give out no information to anyone on future courses of action.
  4. Communicate upwards in the hierarchy, never downwards. You must keep all the members of the higher echelons fully informed. Do not dwell on the details of your progress in destruction but emphasize the gains that will flow from this dismantling. Tell fibs as much as you like because no one will question your version of events.
  5. Never read anything about the history of the research station or read any of the papers and reports that have originated there. The key is that you as an administrator know what should be done, and the last consideration is history. Administrators must keep a clear mind, unconcerned with historical trivia.
  6. Let none of the destruction news reach the media lest the public in general might begin to see what is happening. Newspaper and media coverage are rarely flattering to bureaucrats. If possible, line up a sympathetic media person who can talk about the brilliant future of the research station and the wisdom of the decisions you have made.
  7. Take a strong business approach. Do not worry if you must fire people currently running the research station or eject scientists currently working there. Everyone must retire at some point and all business leaders have solid recipes for hiring contractors to take care of any problems with the buildings. No matter what the extra cost.
  8. Sell the research station if you possibly can in order to gain revenue for your yet to be revealed vision. You may talk complete nonsense to explain why you are making major changes or closing the research station because few of your possible critics will be in a position to distinguish nonsense statements from truth. ‘Alternative facts’ are very useful if your decisions are questioned.
  9. Realize that if you have made a mistake in destroying a research station, your employer will not know that for several years. By that time, you will have ascended in the hierarchy of your employment unit for having carried out such a definitive action. And if your co-workers know the poor job you are doing, they will write sterling letters of reference for you to move you to another position in a different department or agency so that the worse the job you have done, the stronger will be the reference letters to recommend you for another job.

There is almost no literature I can find on this topic of administering a field station. If you think field stations are eternal, it may be a sign that you are very young, or you are very fortunate in working for an agency where moving forward is correctly labeled as progress. I have always thought that long-term field research stations were considered sacred but clearly not everyone agrees. Administrators must have something to do to leave their mark on the world for better or worse. All we can do is watch and be alert for emerging symptoms of collapse.

Swanson, F.J. (2015). Confluence of arts, humanities, and science at sites of long-term ecological inquiry. Ecosphere 6 (8), Article 132. doi: 10.1890/ES15-00139.1.

Five Stages of Ecological Research

Ecological research falls into five broad classes or stages. Each stage has its strengths and its limitations, and it is important to recognize these since no one stage is more or less important than any other. I suggest a classification of these five stages as follows:

  1. Natural History
  2. Behavioural Ecology
  3. Applied Ecology
  4. Conservation Ecology
  5. Ecosystem Ecology

The Natural History stage is the most popular with the public and in some sense the simplest type of ecological research while at the same time the critical foundation of all subsequent research. Both Bartholomew (1986) and Dayton (2003) made impassioned pleas for the study of natural history as a basis of understanding all the biological sciences. In some sense this stage of biological science has now come into its own in popularity, partly because of influential TV shows like those of David Attenborough but also because of the ability of talented wildlife photographers to capture amazing moments of animals in the natural world. Many scientists still look upon natural history as “stamp-collecting” unworthy of a serious ecologist, but this stage is the foundational element of all ecological research.

Behavioural ecology became popular as one of the early outcomes of natural history observations within the broad framework of asking questions about how individuals in a population behave, and what the ecological and evolutionary consequences of these behaviours are to adaptation and possible future evolution. One great advantage of studying behavioural ecology has been that it is quick, perfectly suited to asking simple questions, devising experimental tests, and then being able to write a report, or a thesis on these results (Davies et al. 2012). Behavioural ecology is one of the strongest research areas of ecological science and provides entertainment for students of natural history and excellent science to understand individual behaviour and how it fits into population studies. It is perhaps the strongest of the ecological approaches for drawing the public into an interest in biodiversity.

Applied ecology is one of the oldest fields of ecology since it arose more than 100 years ago from local problems of how organisms affected human livelihoods. It has subdivided into three important sub-fields – pest management, wildlife management, and fisheries management. Applied ecology relies heavily on the principles of population ecology, one level above the individual studies of behavioural and natural history research. These fields are concerned with population changes, whether to reduce populations to stop damage to crops, or to understand why some species populations become pests. All applied ecology heavily interreacts with human usage of the environment and the economics of farming, fisheries, and wildlife harvesting. In a general sense applied ecology is a step more difficult than behavioural ecology because answering the applied problems or management has a longer time frame than the typical three-year thesis project. Applied ecology has a broad interface with evolutionary ecology because human actions can disrupt natural selection and pest evolution can complicate every management problem.

Conservation ecology is the new kid on the block. It was part of wildlife and fisheries management until about 1985 when it was clear to all that some populations were endangered by human changes to the ecosystems of fisheries, forestry, and agriculture. The essential problems of conservation ecology were described elegantly by Caughley (1994). Conservation issues are the most visible of all issues in population and community ecology, and they are often the most difficult to resolve when science dictates one conservation solution that interferes with the dominant economic view of human society. If species of interest are rare the problem is further confounded by the difficulty of studying rare species in the field. What will become of the earth’s ecosystems in the future depends in large part as to how these conservation conflicts can be resolved.

Ecosystem ecology and community ecology are the important focus at present but are hampered by a lack of a clear vision of what needs to be done and what can be done. The problem is partly that there is much poor theory, coupled with much poor data. The critical questions in ecosystem ecology are currently too vague to be studied in a realistic time period of less than 50 years. Climate change is impacting all our current ideas about community stability and resilience, and what predictions we can make for whole ecosystems in the light of a poor database. Ironically experimental manipulations are being done by companies with an economic focus such as forestry but there are few funds to make use of these large-scale landscape changes. In the long term, ecosystem ecology is the most significant aspect of ecology for humans, but it is the weakest in terms of understanding ecosystem processes. We can all see the negative effects of human changes on landscapes, but we have little in the way of scientific guidance to predict the long-term consequences of these changes and how they can be successfully ameliorated.

All of this is distressing to practical ecologists who wish to make a difference and be able to counteract undesirable changes in populations and ecosystems. It is important for all of us not to give up on reversing negative trends in conservation and land management and we need to do all we can to influence the public in general and politicians in particular to change negative trends to positive ones in our world. An array of good books points this out very forcefully (e.g., Monbiot 2018, Klein 2021). It is the job of every ecologist to gather the data and present ecological science to the community at large so we can contribute to decision making about the future of the Earth.

Bartholomew, G. A. (1986). The role of natural history in contemporary biology. BioScience 36, 324-329. doi: 10.2307/1310237

Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63, 215-244. doi: 10.2307/5542

Davies, N.B., Krebs, J.R., and West, S.A. (2012) ‘An Introduction to Behavioural Ecology.‘ 4th edn. (Wiley-Blackwell: Oxford.). 520 pp.

Dayton, P.K. (2003). The importance of the natural sciences to conservation. American Naturalist 162, 1-13. doi: 10.1086/376572

Klein, Naomi (2021) ‘How to Change Everything: The Young Human’s Guide to Protecting the Planet and Each Other ‘ (Simon and Schuster: New York.) 336 pp. ISBN: 978-1534474529

Monbiot, George. (2018) ‘Out of the Wreckage: A New Politics for an Age of Crisis.’ (Verso.). 224 pp. ISBN: 1786632896

On Global Science and Local Science

I suggest that the field of ecology is fragmenting into two large visions of the science which for the sake of simplicity I will call Global Science and Local Science. This fragmentation is not entirely new, and some history might be in order.

Local Science deals with local problems, and while it aspires to develop conclusions that apply to a broader area than the small study area, it has always been tied to useful answers for practical questions. Are predators the major control of caribou declines in northern Canada? Can rats on islands reduce ground-nesting birds to extinction? Does phosphate limit primary production in temperate lakes? Historically Local Science has arisen from the practical problems of pest control and wildlife and fisheries management with a strong focus on understanding how populations and communities work and how humans might solve the ecological problems they have largely produced (Kingsland 2005). The focus of Local Science was always on a set of few species that were key to the problem being studied. As more and more wisdom accumulated on local problems, ecologists turned to broadening the scope of enquiry, asking for example if solutions discovered in Minnesota might also be useful in England or vice versa. Consequently, Local Science began to be amalgamated into a broader program of Global Science.

Global Science can be defined in several ways. One is purely financial and big dollars; this not what I will discuss here. I want to discuss Global Science in terms of ecological syntheses, and Global Science papers can often be recognized by having dozens to hundreds of authors, all with data to share, and with meta-analysis as the major tool of analysis. Global Science is now in my opinion moving away from the experimental approach that was a triumph of Local Science. The prelude to Global Science was the International Biological Program (IBP) of the 1970s that attempted to produce large-scale systems analyses of communities and ecosystems but had little effect in convincing many ecologists that this was the way to the future. At the time the problem was largely the development of a theory of stability, a property barely visible in most ecological systems.

Global Science depends on describing patterns that occur across large spatial scales. These patterns can be discovered only by having an extensive, reliable set of local studies and this leads to two problems. The first is that there may be too few reliable local studies. This may occur because different ecologists use different methods of measurement, do not use a statistically reliable sampling design, or may be constrained by a lack of funding or time. The second problem is that different areas may show different patterns of the variables under measurement or have confounding causes that are not recognized. The approach through meta-analysis is fraught with the decisions that must be made to include or exclude specific studies. For example, a recent meta-analysis of the global insect decline surveyed 5100 papers and used 166 of them for analysis (van Klink et al. 2020). It is not that the strengths and limitations of meta-analysis have been missed (Gurevitch et al. 2018) but rather the question of whether they are increasing our understanding of the Earth’s ecology. Meta-analyses can be useful in suggesting patterns that require more detailed analyses. In effect they violate many of the rules of conventional science in not having an experimental design, so that they suggest patterns but can be validated only by a repeat of the observations. So, in the best situations meta-analyses lead us back to Local Science. In some situations, meta-analyses lead to no clear understanding at all, as illustrated in the conclusions of Geary et al. (2020) who investigated the response of terrestrial vertebrate predators to fire:

“There were no clear, general responses of predators to fire, nor relationships with geographic area, biome or life-history traits (e.g. body mass, hunting strategy and diet). Responses varied considerably between species.” (page 955)

Note that this study is informative in that it indicates that ecologists have not yet identified the variables that determine the response of predators to fire. In other cases, meta-analysis has been useful in redirecting ecological questions because the current global model does not fit the facts very well (Szuwalski et al. 2015).

The result of this movement within both ecological and conservation science toward Global Science has been a shift in the amount of field work being done. Rios-Saldana et al. (2018) surveyed the conservation literature over the last 35 years and found that fieldwork-based publications decreased by 20% in comparison to a rise of 600% and 800% in modelling and data analysis studies. This conclusion could be interpreted that ecologists now realize that less fieldwork is needed at this time, or perhaps the opposite. 

In an overview of ecological science David Currie (2019) described an approach to understanding how progress in ecology has differed from that in the physical sciences. He suggests that the physical sciences focused on a set of properties of nature whose variation they analyzed. They developed ‘laws’ Like Newton’s laws or motion that could be tested in simple or complex systems. By contrast ecology has developed largely by asking how processes like competition or predation work, and not by asking questions about the properties of natural systems, which is what interests the general public trying to solve problems in conservation or pest or fisheries management. Currie (2019) summarized his approach as follows:

“Successful disciplines identify specific goals and measure progress toward those goals. Predictive accuracy of properties of nature is a measure of that progress in ecology. Predictive accuracy is the objective evidence of understanding. It is the most useful tool that science can offer society.” (page 18)

Many of these same questions underlay the critical appraisal of ecology by Peters (1991).

There is no one approach to ecological science, but we need to continue to ask what progress is being made with every approach. These are key questions for the future of ecological research, and they are worthy of much more discussion because they determine what students will be taught and what kinds of research will be favoured for funding in the future.

Currie, D.J. (2019). Where Newton might have taken ecology. Global Ecology and Biogeography 28, 18-27. doi: 10.1111/geb.12842.

Geary, W.L., Doherty, T.S., Nimmo, D.G., Tulloch, A.I.T., and Ritchie, E.G. (2020). Predator responses to fire: A global systematic review and meta-analysis. Journal of Animal Ecology 89, 955-971. doi: 10.1111/1365-2656.13153.

Gurevitch, J., Koricheva, J., Nakagawa, S., and Stewart, G. (2018). Meta-analysis and the science of research synthesis. Nature 555, 175-182. doi: 10.1038/nature25753.

Kingsland, Sharon .E. (2005) ‘The Evolution of American Ecology, 1890-2000  ‘ (Johns Hopkins University Press: Baltimore.) ISBN: 0801881714

Peters, R.H. (1991) ‘A Critique for Ecology.’ (Cambridge University Press: Cambridge, England.) ISBN: 0521400171

Ríos-Saldaña, C. Antonio, Delibes-Mateos, Miguel, and Ferreira, Catarina C. (2018). Are fieldwork studies being relegated to second place in conservation science? Global Ecology and Conservation 14: e00389. doi: 10.1016/j.gecco.2018.e00389.

Szuwalski, C.S., Vert-Pre, K.A., Punt, A.E., Branch, T.A., and Hilborn, R. (2015). Examining common assumptions about recruitment: a meta-analysis of recruitment dynamics for worldwide marine fisheries. Fish and Fisheries 16, 633-648. doi: 10.1111/faf.12083.

van Klink, R., Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A. and Chase, J.M. (2020). Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417-420. doi: 10.1126/science.aax9931.

Ecology for Now or the Future

With the general belief that the climate is changing and that these changes must continue for at least 100 years due to the atmospheric physics of greenhouse gases, ecologists of all stripes face a difficult decision. The optimist says to continue with current studies, with due analysis of data from the past getting published, with the assumption that the future will be like the past. We know that the future will not be like the past so our belief in the future is a projection not a prediction. Does this mean that ecologists today should really be in the History Department of the Faculty of Arts?

Well, no one would allow this to happen, since we are scientists not the connivers of untestable stories of past events that masquerade as history, a caricature of the scientific method. The general problem is applicable to all the sciences. The physical sciences of physics and chemistry are fixed for all eternity, so physicists do not have to worry. The geological sciences are a mix of history and applied physics with hypotheses that are partly testable in the current time but with an overall view of future predictions that have a time scale of hundreds to thousands of years. One way to look at this problem is to imagine what a textbook of Physics would look like in 100 years, compared to a textbook of Geology or Biology or Ecology.

Ecological science is burdened by the assumption of equilibrium systems which we all know to be false since we have the long-term evidence of evolution staring at us as well as the short-term evidence of climate change. Ecologists have only two options under these constraints: assume equilibrium conditions over short time-frames or model the system to provide future projections of change. First, assume we are dealing with equilibrium systems within a defined time frame so that we can define clear hypotheses and test them on a short time scale of 10 to perhaps 20 years so we reach a 10–20-year time scale understanding of ecological processes. This is how most of our ecological work is currently carried out. If we wish to study the pollination of a particular set of plants or a crop, we work now to find out which species pollinate, and then hopefully in a short time frame try to monitor if these species are increasing or declining over our 10–20-year time span. But we do this research with the knowledge that the time frame of our ecological information is at most 100 years and mostly much less. So, we panic with bird declines over a 48 year time span (Rosenberg et al. 2019) with an analysis based on unreliable population data, and we fail to ask what the pattern might look like if we had data for the last 100 years or what it might look like in the next 100 years. We have the same problem with insect declines (Wagner et al. 2021, Warren et al. 2021).

If we wish to improve these studies we need much better monitoring programs, and with some notable exceptions there is little sign yet that this is happening (Lindenmayer et al. 2018, 2020). But the real question must come back to the time frame and how we can make future projections. We cannot do this with a 3-year funding cycle. If most of our conservation problems can be traced to human alterations of the biosphere then we must document these carefully with the usual scientific methods. At present I would hazard a guess that 95% of all endangered species are due directly to human meddling, even if we remove the effect of climate change.  

One way to make future projections is to model the population or community under study. A great deal of modelling is being done and has been done but there is little follow-through of how accurate the model predictions have been and little plan to test these projections. We may be successful with models that predict next year’s population or community dynamics, given much background data but that is only a tiny step to estimating what will be there in even 20 or 30 years. We need testable models more than panic calls about declining species with no efforts to discover if and why.

Where does that leave us? We must continue to analyse the ecological state of our current populations and communities and beware of the assumption that they are equilibrium systems. While physics for the future is rather well settled, ecological questions are not.

Lindenmayer, D.B., Likens, G.E., and Franklin, J.F. (2018). Earth Observation Networks (EONs): Finding the Right Balance. Trends in Ecology & Evolution 33, 1-3. doi: 10.1016/j.tree.2017.10.008.

Lindenmayer, D.B., Kooyman, R.M., Taylor, C., Ward, M., and Watson, J.E.M. (2020). Recent Australian wildfires made worse by logging and associated forest management. Nature Ecology & Evolution 4, 898-900. doi: 10.1038/s41559-020-1195-5.

Rosenberg, K.V., et al. (2019). Decline of the North American avifauna. Science 366, 120-124. doi: 10.1126/science.aaw1313.

Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R., and Stopak, D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences 118, e2023989118. doi: 10.1073/pnas.2023989118.

Warren, M.S., et al. (2021). The decline of butterflies in Europe: Problems, significance, and possible solutions. Proceedings of the National Academy of Sciences 118 (2), e2002551117. doi: 10.1073/pnas.2002551117.

Ecological Science: Monitoring vs. Stamp Collecting

Ecology as a science is deeply divided by two views of the natural world. First is the view that we need to monitor changes in the distribution and abundance of the biota and try to explain why these changes are occurring through experiments. The second view is that we need to understand ecosystems as complex systems, and this can be done only by models with a tenuous link to data. It is worth discussing the strengths and weaknesses of each of these views of our science.

The first view could be described as the here-and-now approach, studies of how the populations, communities, and ecosystems are changing in all the biomes on Earth. It is clearly impossible to do this properly because of a lack of funding and person-power. Because of this impossibility we change our focus to short-term studies of populations, species, or communities and try to grasp what is happening in the time scale of our lifetime. This had led to a literature of confusing short-term studies of problems that are long-term. Experiments must be short term because of funding. Any long-term studies such of those highlighted in textbooks are woefully inadequate to support the conclusions reached. Why is this? It is the baffling complexity of even the simplest ecological community. The number of species involved is too large to study all of them, so we concentrate on the more abundant species, assuming all the rare species are of little consequence. This has led to a further division within the monitoring community between conservation ecologists who worry about the extinction of larger, dominant species and those that worry about the loss of rare species.

The first approach is further compromised by climate change and human exploitation of the Earth. You could invest in the study of a grassland ecosystem for 15 years only to find it turned into a subdivision of houses in year 16. We try to draw conclusions in this hypothetical case by the data of the 15 years of study. But if physiological ecologists and climate change models are even approximately correct, the structure of similar grassland ecosystems will change due to rainfall and temperature shifts associated with greenhouse gases. Our only recourse is to hope that evolution of physiological tolerances will change fast enough to rescue our species of interest. But there is no way to know this without further empirical studies that monitor climate and the details of physiological ecology. And we talk now about understanding only single species and are back to the complexity problem of species interactions in communities.

The second approach is to leap over all this complexity as stamp-collecting and concentrate on the larger issues. Are our ecological communities resilient to climate change and species invasions? Part of this approach comes from paleoecology and questions of what has happened during the last 10,000 or one million years. But the details that emerge from paleoecology are very large scale, very interesting but perhaps not a good guide to our future under climate change. If a forward-looking forestry company wishes to make sure it has 100-year-old trees to harvest in 100 years’ time, what species should they plant now in central Canada? Or if a desert community in Chile is to be protected in a national park, what should the management plan involve? These kinds of questions are much harder to answer than simpler ones like how many dingoes will we have in central Australia next year.

Long-term experiments could bridge the gap between these two approaches to ecological understanding, but this would mean proper funding and person-power support for numerous experiments that would have a lifetime of 25 to 100 years or more. This will never happen until we recognize that the Earth is more important than our GDP, and that economics is the king of the sciences.

Where does all this lead ecological scientists? Both approaches have been important to pursue in what has been the first 100 years of ecological studies and they will continue to be important as our ecological understanding improves. We need good experimental science on a small scale and good broad thinking on long time scales with extensive studies of everything from coral reefs to the Alaskan tundra. We need to make use of the insights of behavioural ecology and physiological ecology in reaching our tentative conclusions. And if anyone tells you what will happen in your lifetime in all our forests and all the biodiversity on Earth, you should be very careful to ask for strong evidence before you commit to a future scenario.

Beller, E.E., McClenachan, L., Zavaleta, E.S., and Larsen, L.G. (2020). Past forward: Recommendations from historical ecology for ecosystem management. Global Ecology and Conservation 21, e00836. doi: 10.1016/j.gecco.2019.e00836.

Bro-Jørgensen, J., Franks, D.W., and Meise, K. (2019). Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation. Philosophical Transactions of the Royal Society, B.  Biological Sciences 374: 20190008.  doi: 10.1098/rstb.2019.0008.

Lidicker, W.Z. (2020). A Scientist’s Warning to humanity on human population growth. Global Ecology and Conservation 24, e01232. doi: 10.1016/j.gecco.2020.e01232.

McGowan, D. W., Goldstein, E. D., and Zador, S. (2020). Spatial and temporal dynamics of Pacific capelin Mallotus catervarius in the Gulf of Alaska: implications for ecosystem-based fisheries management. Marine Ecology. Progress Series 637, 117-140. doi: 10.3354/meps13211.

Tsujimoto, M., Kajikawa, Y., and Matsumoto, Y. (2018). A review of the ecosystem concept — Towards coherent ecosystem design. Technological Forecasting & Social Change 136, 49-58. doi: 10.1016/j.techfore.2017.06.032.

Wolfe, Kennedy, Kenyon, Tania M., and Mumby, Peter J. (2021). The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs 40, 1769-1806. doi: 10.1007/s00338-021-02185-9.

Yu, Zicheng, Loisel, J., Brosseau, D.P., Beilman, D.W., and Hunt, S.J. (2010). Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters 37, L13402. doi: 10.1029/2010GL043584.

Why Ecology Fails to Prosper

The general science of Ecology has changed dramatically during the last 60 years and my perception is that at present it is failing its critical role in developing science for the good of the Earth. I ask here if this pessimistic view is correct, why that might be, and if it is possible to change our trajectory. Every science must focus on major problems and these problems are too often lost as time progresses. The causes of these changes are rarely due to the competence of the scientists involved and more typically are found in the social milieu.  

The most obvious problem is science funding. You will appreciate that some sciences are funded very extravagantly and others very poorly. It is a decision of most societies that the sciences of medicine, economics and law are the kings of the hill. More funding probably flows to medical science than to all the other sciences combined. You can argue that this is what should occur, since humans are the most dominant and most important species in the Earth’s ecosystems. The confound here is the ethical one – are the poor of the world to be helped or not? Such a question seems outrageous, but just look at the distribution of Covid vaccines at different countries around the world. Economics is a strange bedfellow of medicine in the apparent view of society and its governments. The result is that there are more economists in the world today than non-medical scientists. We will not change this in our day.

The sciences that are most highly regarded are those that achieve two goals: first, rapid developments that improve our wealth, economic, and social goals, and second, developments that enable Earth as a planet to be exploited for human welfare. The physical sciences and engineering permit us to travel quickly, to fight wars against our enemies, and as a spinoff provide us with better automobiles and kitchen appliances. Geology helps us to find oil, iron ore, and lithium while it maps the Earth to help us understand its history. Zoology and Botany are different. They are supported strongly when they interface with the medical sciences and agriculture at a very practical level but otherwise are low in the funding order.

Ecology differs in that it proposes to understand how the populations of animals and plants, the biological communities, and ecosystems operate and what forces cause these to change. The first problem that arises with this mandate it that ecological understanding requires time frames that exceed human lifespans. So, ecology faces the same problem as geology but is not easily able to be useful in telling us where to build dams, where to mine gold and coal. We face an impossible barrier. To describe the biota of the Earth with its millions of species will occupy us for hundreds of years, assuming the funding is there. To understand why communities and ecosystems change will require an equal time span. But since ecological elements are driven in many ways by weather, climate change forces us to analyse an ever-changing network of species interactions.  

A consequence of this dilemma for ecologists is that they must study how humans are destroying the Earth and suggest a resolution of these problems. We are squeezed between our original objective of understanding how ecological interactions structure our world and serious immediate problems. An introduced pest is killing our trees – do something about this. Deer populations are too high so fix that. Fisheries are in difficulty, manage that. Some iconic species are declining in abundance, so citizens push to have more funding for biodiversity conservation. These are all short-term problems, while the need for ecological understanding is almost entirely long term. This takes us back to funding. For the past 30 or more years governments around the world have been reducing funding for ecological investigations. Government biologists have not increased in number given the urgent problems of the day. University funding of ecological sciences and ecological faculty members has declined partly because ecologists do not increase economic growth. Private funding has not come to the rescue because it is largely directed to social and economic issues, partly because of the feeling that it is the government’s job to deal with long-term issues in research.

The only solution is for ecologists to work together on important large-scale ecological problems with minimal funding. But this is impossible within the university system in which teaching is a focus and research can only be short-term. Attempts to address the large-scale ecological issues have resulted in many publications that use meta-analyses to resolve ecological questions. I doubt that these have achieved the resolution of ecological issues that we need (e.g. Geary et al. 2020).

What can we do about this relatively gloomy situation? One suggestion is to continue as we are, addressing short-term questions with limited funding. The advantage of this approach is that it allows individuals freedom from group constraints. One disadvantage is that two studies of the same problem may not be comparable unless the methods used were the same (e.g. Christie et al. 2019). The argument that climate change is happening so everything will change, and the past will not be relevant to the present is an argument of a broad uncoordinated approach to ecological issues.

Another approach can be to identify the critical ecological questions that we need answered now. Few have been brave enough to attempt this (Sutherland et al. 2010, 2013, 2018) for the broad area of conservation biology. An attempt to judge how much progress had been made on the issues listed in these three papers would be profitable in order to determine if this approach is useful in coordinating research programs. We might hope that ecological discord would be reduced if critical ecological questions were attacked with a consistent experimental design.

This discussion of ecology fits under the ‘empirical ecological studies’ framework of Fulton et al. (2019), and the expansive belief that theoretical models and system models will drive ecology into a successful science is illustrated in this recent review (O’Connor et al. 2020) and the accompanying articles. My concern is that these approaches have gotten us very little ahead in understanding ecological systems to date, and that until empirical ecological studies are increased in scope, duration, and precision we will not know whether models and systems analysis are leading us to a better understanding of the Earth’s ecosystems and the drivers of change or not. There is much left to be done.  

Christie, A.P.et al. (2019). Simple study designs in ecology produce inaccurate estimates of biodiversity responses Journal of Applied Ecology 56, 2742-2754. doi: 10.1111/1365-2664.13499.

Fulton, E.A.et al. (2019). Where the ecological gaps remain, a modelers’ perspective. Frontiers in Ecology and Evolution 7. doi: 10.3389/fevo.2019.00424.

Geary, W.L., et al. (2020). Predator responses to fire: A global systematic review and meta-analysis. Journal of Animal Ecology 89, 955-971. doi: 10.1111/1365-2656.13153.

O’Connor, M.I.et al. (2020). Editorial: Unifying ecology Across scales: Progress, challenges and opportunities. Frontiers in Ecology and Evolution 8, 610459. doi: 10.3389/fevo.2020.610459.

Sutherland, W.J. et al. (2010). A horizon scan of global conservation issues for 2010. Trends in Ecology & Evolution 25, 1-7. doi: 10.1016/j.tree.2009.10.003.

Sutherland, W.J. et al. (2013). Identification of 100 fundamental ecological questions. Journal of Ecology 101, 58-67. doi: 10.1111/1365-2745.12025.

Sutherland, W.J et al. (2018). A 2018 Horizon Scan of Emerging Issues for Global Conservation and Biological Diversity. Trends in Ecology & Evolution 33, 47-58. doi: 10.1016/j.tree.2017.11.006.

On a Department of Monitoring Biology

Begin with the current university structure in North America. Long ago it was simple: a Department of Biology, a Department of Microbiology, a Department of Forestry, and possibly a Department of Fisheries and Wildlife Management. We could always justify a Department of Microbiology because people get sick, a Department of Forestry because people buy wood to build houses, and a Department of Fisheries and Wildlife Management because people fish and hunt. But what are we going to do with a Department of Biology? It rarely deals with anything that will make money, so we divide it into interest groups, a Department of Botany, and a Department of Zoology. All is well. But now a new kid appears on the block, Molecular Biology, and it claims to be able to solve all the issues that were formerly considered the focus of Botany and Zoology and probably several other departments. Give us all the money, the molecular world shouted, and we will solve all your problems and do it quickly. So now we get a complete hassle for money, buildings and prestige, and the world turns on which of the bevy of bureaucrats races to the top to make all the major decisions. If you wish to have proof of concept, ask anyone you can find who teaches at a university if he or she was ever consulted about what direction the university should take.

At this point we begin to proceed based on ‘follow the money’. So, for example if the Department of Forestry gets the most money from whomever, it must get the biggest buildings, the largest salaries, and the newest appointments. So soon you have a system of intrigue that would rival the Vatican. The winners of late are those departments that have most to do with people, health, and profit. So Medical Schools march on, practical matters like economics and engineering do well, and molecular biology rises rapidly.

What has happened to the old Departments of Botany and Zoology? They make no profit; their only goal is to enrich our lives and our understanding of the world around us. How can we make them profitable? A new program races to the rescue, a Department of Biodiversity, which will include everyone in plant, animal and microbe science who cannot get into one of the more practical, rich, existing departments. The program now is to convince the public and the governments that biodiversity is important and must be funded more. David Attenborough to the fore, and we are all abandoning the old botany and zoology and moving to biodiversity.

Now the problem arises for ecologists. Biodiversity includes everything, so where do we start? If we have so far described and named only about 15% of the life on Earth, should we put all our money into descriptive taxonomy? Should we do more biogeography, more ecology, more modelling, or more taxonomy, or a bit of all? So, the final question of our quest arrives: what should we be doing in a Department of Biodiversity if indeed we get one?

If you have ever been involved in herding cats, or even sheep without a dog you can imagine what happens if you attempt to set a priority in any scientific discipline. The less developed the science, the more the arguments about where to put our money and people. Ecology is a good example because it has factions with no agreement at all about what should be done to hasten progress. The result is that we fall back on the Pied Pipers of the day, form bandwagons, and move either forward, sideways, or backwards depending on who is in charge.

So, let us step back and think amid all this fighting for science funding. The two major crises of our time are human population growth and the climate change emergency. In fact, there is only one major crisis, climate change, because as it apparently progresses, everything will be overwhelmed in a way only few can try to guess (Wallace-Wells 2019, Lynas 2020). After some discussion you might suggest that we do two things in biology: first, get a good grip on what we have now on Earth, and second, keep monitoring life on Earth as the climate emergency unravels so that we can respond with mitigation as required. This is not to say we should stop doing other things. We should be more than unifactorial scientists, and it may be a small recommendation to the world of thinkers that we consider endowing at least some universities with a Department of Monitoring Biology and endow it with enough funding to do the job well. (Lindenmayer 2018; Lindenmayer et al. 2018; Nichols et al. 2019). It might be our best investment in the future of biology.

Lindenmayer, D. (2018). Why is long-term ecological research and monitoring so hard to do? (And what can be done about it). Australian Zoologist 39: 576-580. doi: 10.7882/az.2017.018.

Lindenmayer, D.B., Likens, G.E., and Franklin, J.F. (2018). Earth Observation Networks (EONs): Finding the Right Balance. Trends in Ecology & Evolution 33, 1-3. doi: 10.1016/j.tree.2017.10.008.

Lynas, Mark (2020) ‘Our Final Warning: Six Degrees of Climate Emergency’. 4th Estate, Harper Collins, London. E book ISBN: 978-0008308582

Nichols, J.D., Kendall, W.L., and Boomer, G.S. (2019). Accumulating evidence in ecology: Once is not enough. Ecology and Evolution 9, 13991-14004. doi: 10.1002/ece3.5836.

Wallace-Wells, David (2019) ‘The Uninhabitable Earth: Life After Warming ‘ Tim Duggan Books: New York. 304 pp. ISBN: 978-0-525-57670-9.