Category Archives: General Ecology

On Subsidies to Ecological Systems

After reading the important paper by Killengreen et al. (2011) it dawned on me that I had not thought enough about subsidies to ecosystems in the modern era. If we put the idea of subsidies together with the idea that at least many terrestrial systems are strongly influenced top down by predation, some pieces of a few puzzles seem to come together for me. For anyone working in northern Canada, one puzzle has always been how small predators like weasels survive over the winter when lemmings or voles are in very low abundance. Certainly these are highly efficient predators, but there is a limit to being a good predator when you are small and your prey is under the snow at densities that might be only a few individuals per square kilometre. But if you are a weasel and happen to find a caribou or muskox carcass, you might well be in heaven for the winter.

There are many examples of predator subsidies provided by humans. Dingos in the outback of Australia utilize garbage dumps from mining companies (Newsome et al. 2014). Feral cats in the outback of Australia travel long distances to human habitations to get food when drought has reduced prey abundance (Molsher et al. 1999). Snow geese have increased greatly in abundance from winter food provided by agricultural crops in southern USA (Alisauskas et al. 2011). There must be many more examples in the literature, even without looking at the data on rats in city dumps.

But what does all this mean, since in some sense we knew these facts long ago? First and foremost I think it means we are studying a world that did not exist in the past, so that the ‘balance of nature’ is changed in a variety of ways we do not comprehend or understand. If predators are subsidized for example over the winter period, prey populations may on average be more heavily exploited by additional predators that have not died by starvation. Or to take another view of the matter, additional predators surviving might increase intraguild predation providing a variety of indirect effects we can only guess at now.

There is an extensive literature on the effects of nutrient subsidies to aquatic ecosystems, going back to phosphorus in soap (Schindler 1977) and acid rain (Likens et al. 1996). The difference in perspective now is that while most of the effects of nutrient subsidies to lakes and forests are bottom-up, many of the more recent subsidies being recognized are top-down in affecting predator survival. Subsidies can in fact be negative in the case of the reduction of top predators by human persecution (Ripple et al. 2014).

Perhaps what concerns me most about this is that we will never be able to stop doing ecology and testing theories about how populations and communities work if the world keeps changing under our feet. The laws of physics and chemistry may not change over time, but the generalizations of ecology may change faster than we can imagine because of human perturbations.

Alisauskas, R.T., Rockwell, R.F., Dufour, K.W., Cooch, E.G., Zimmerman, G., Drake, K.L., Leafloor, J.O., Moser, T.J. & Reed, E.T. (2011) Harvest, survival, and abundance of midcontinent Lesser Snow Geese relative to population reduction efforts. Wildlife Monographs, 179, 1-42.

Killengreen, S.T., Lecomte, N., Ehrich, D., Schott, T., Yoccoz, N.G. & Ims, R.A. (2011) The importance of marine vs. human-induced subsidies in the maintenance of an expanding mesocarnivore in the arctic tundra. Journal of Animal Ecology, 80, 1049-1060.

Likens, G.E., Driscoll, C.T. & Buso, D.C. (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science, 272, 244-245.

Molsher, R., Newsome, A. & Dickman, C. (1999) Feeding ecology and population dynamics ofo the feral cat (Felis catus) in relation to the availability of prey in central-eastern New South Wales. Wildlife Research, 26, 593-607.

Newsome, T.M., Ballard, G.-A., Fleming, P.J.S., van de Ven, R., Story, G.L. & Dickman, C.R. (2014) Human-resource subsidies alter the dietary preferences of a mammalian top predator. Oecologia, 175, 139-150.

Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., Schmitz, O.J., Smith, D.W., Wallach, A.D. & Wirsing, A.J. (2014) Status and ecological effects of the world’s largest carnivores. Science, 343, 1241484.

Schindler, D.W. (1977) Evolution of phosphorus limitation in lakes. Science, 195, 260-262.

Large Mammal Conservation

The conservation problem is largely focused on large things, birds and mammals, with a few pretty things like butterflies thrown in. What concerns me is the current distortion in the conservation knowledge base available for large animal conservation. I will talk largely about mammals but large birds are equally a problem.

The difficulty is this. It is nearly impossible to study large mammals because they are scarce on the ground, so census methods must be spatially extensive and thus very expensive. One needs a big budget to do this properly, and this effectively rules out university scientists unless they can collaborate with government biologists who have large budgets or private consortia who need the large mammals so they can shoot them. But even with a large budget, a large mammal ecologist cannot be very productive as measured in papers per year of research effort. So the universities in general have shied away from hiring young scientists who might be described as large mammal ecologists. This produces positive feedback in the job market so that few young scientists see this as a viable career.

All of this would be changed if governments were hiring large mammal ecologists. But they are not, with few exceptions. Governments at least in Canada and Australia have been shedding ecologists of all varieties while all the time professing how much they are doing for conservation of threatened species. The advantage of this approach for governments is that they shed high cost biologists, and cover their tracks with some hiring of public relations personnel who have no field costs and perhaps a few biologists who concentrate on small creatures and local problems. So we reach a stalemate when it comes to large mammal conservation. Why do we need polar bear scientists when all they do is make trouble? We can escape such trouble easily. Count the polar bears or the caribou every 5 years or so, so there is consequently much less information that scientists can put their fingers on. (Imagine if we counted the stock market once every 5 years.) The consequence is that in many areas we have large scale, long-term problems with few scientists and only small scale funding to find out what is happening in the field. For polar bears this seems to be partly alleviated by private funding from people who care, while the government shirks its duties for future generations.

For caribou in Canada the situation is worse because the problem is spread over more than half of Canada so the funding and person-power needed for conservation is much larger, and this is further compounded by the immediate conflict of caribou with industrial developments in oil, gas, and forestry. When dollars conflict with conservation needs, it is best not to bet on conservation winning. What good has a polar bear or a caribou done for you?

The potential consequence of all this is that we slowly lose populations of these large iconic species. If this loss is slow enough, no one seems to notice save a few concerned conservation biologists who do not own the newspapers and TV stations. And conservation ecologists grow pessimistic that we can save these large species that require much habitat and freedom from disturbance. The solutions seem to be two. First, build a big fence and keep them in a very large zoo (Packer et al. 2013). This will work for some species like caribou, as Kruger Park in South Africa illustrates so well with African large mammals (but some disagree, Creel et al. 2013). But the fence-solution will not work for polar bears, and our best response for their conservation may be to cross our fingers and hope, all the while trying to slow down the losses in the best way we can. A second solution is to decide that these large mammal conservation situations are not scientific but sociological, and progress can best be made by doing good sociological research to change the attitudes of humans about the value of biodiversity. If this is the solution, we do not need to worry that there are no biologists available to investigate the conservation issues of large mammals.

I think perhaps the bottom line is that it takes a spirited soul to aim for a career in large mammal conservation research and we hope that this happens and the conservation future for large mammals in Canada grows brighter.

Creel, S., 2013. Conserving large populations of lions – the argument for fences has holes. Ecology Letters 16 (5): 635-641. doi: 10.1111/ele.12145.

Packer, C., et al. 2013. Conserving large carnivores: dollars and fence. Ecology Letters. 16: 1413-e3. doi: 10.1111/ele.12091.

Pauly, D. 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology and Evolution 10: 430.

The Secretary’s Dilemma

Back in the good old days when Departments of Biology had secretaries that did the typing of formal letters, one problem always stumped me. Let us say I have a letter of reference that must be typed on departmental stationary and on the average might take about 20 minutes of typing for a good secretary. Now if I took that in today, it could be done in 20 minutes and given back to me to mail say within the hour. But in every case I can remember the turnaround time for a letter was about one week. The puzzle was that it took the same amount of time to type the letter 7 days from now as it would today, so why the delay? If it was backlog, there must be a permanent backlog or the return time would be variable not constant.

No secretaries exist today in modern universities and we all type our own letters on the computer, so why is this puzzle relevant? I suggest that it is the same dilemma that exists over referee reviews of submitted manuscripts for scientific journals. To be more specific I sit now waiting for reviews and a decision on a paper submitted 4 months ago. This is not a record I would presume, but I had another paper submitted for which the review took 6 months. Now go back to the Secretary’s Dilemma. If you are to review a paper, you could do it in say 3-4 hours today when it arrives, or put it aside for 4 months. Whatever you decide, it will take you the same amount of time to do the actual review whether now or later. So we need a set of hypotheses to explain this anomalous situation.

First of all we note that some journals like SCIENCE or PNAS will reject your paper within one day, an extreme example of the-journal-is-overrun hypothesis. If they decide to review it, I would guess you will hear something within a week or two. There are some journals that promise a decision within a short time, 2 to 4 weeks for example. These journals threaten their reviewers if they do not act within a short time. But in some cases it still takes a long time to get a decision letter, and this might be another the-editor-is-overrun hypothesis, no matter how fast the reviewers respond. Finally, many journals do not promise anything in timing, and this might be explained by the hypothesis that our-reviewers-are-overrun. This problem in turn can be a side effect of the last problem I can identify, the I-am-too-important-to-review-papers hypothesis, so that reviews fall on a small subset of ecologists rather than more evenly. One can be sympathetic to these situations since it is my observation that everyone is overrun all the time in the modern university. And everyone must publish many papers to gain a position, with many associated issues discussed by Statzner and Resh (2010).

There are some possible solutions. One is to blackball reviewers who take excessive time to return reviews. I imagine many editors do this already. Another relief valve might be to get rid of paper journals and make everything electronic. This should reduce the cost of journals and allow expanded volumes. I gain the impression that many journals have page limits set by the cost structure, so that one receives a note accompanying the review sheet that states that the journal must reject 85% of papers so that only Nobel Prize papers can be accepted. And to rub the whole process in more, some journals make you pay to publish. You do all the work, get the paper ready, and then they want money to publish it. You can see why some people start their own journal (not a solution for the faint hearted).

And finally I cannot pass on this subject without a comment about civilized behaviour on the part of reviewers. Ad hominem attacks, sarcastic remarks, and blanket condemnations have no place in any review. Journal editors should put such reviews in the garbage can. There are a few simple guidelines for reviewers, and they are summarized in a new paper by Al Glen (2014). Please read it, memorize it, and act on it when you are a reviewer.

Glen, A.S. 2014. A new ‘golden rule’ for peer review? Bulletin of the Ecological Society of America 95(4): 431-434.

Statzner, B., and Resh, V.H. 2010. Negative changes in the scientific publication process in ecology: potential causes and consequences. Freshwater Biology 55(12): 2639-2653. doi: 10.1111/j.1365-2427.2010.02484.x.

 

Is Ecology like Economics?

One statement in Thomas Piketty’s book on economics struck me as a possible description of ecology’s development. On page 32 he states:

“To put it bluntly, the discipline of economics has yet to get over its childish passion for mathematics and for purely theoretical and often highly ideological speculation at the expense of historical research and collaboration with the other social sciences. Economists are all too often preoccupied with petty mathematical problems of interest only to themselves. This obsession with mathematics is an easy way of acquiring the appearance of scientificity without having to answer the far more complex questions posed by the world we live in.”

If this is at least a partially correct summary of ecology’s history, we could argue that finally in the last 20 years ecology has begun to analyze the far more complex questions posed by the ecological world. But it does so with a background of oversimplified models, whether verbal or mathematical, that we are continually trying to fit our data into. Square pegs into round holes.

Part of this problem arises from the hierarchy of science in which physics and in particular mathematics are ranked as the ideals of science to which we should all strive. It is another verbal model of the science world constructed after the fact with little attention to the details of how physics and the other hard sciences have actually progressed over the past three centuries.

Sciences also rank high in the public mind when they provide humans with more gadgets and better cars and airplanes, so that technology and science are always confused. Physics led to engineering which led to all our modern gadgets and progress. Biology has assisted medicine in continually improving human health, and natural history has enriched our lives by raising our appreciation of biodiversity. But ecology has provided a less clearly articulated vision for humans with a new list of commandments that seem to inhibit economic ‘progress’. Much of what we find in conservation biology and wildlife management simply states the obvious that humans have made a terrible mess of life on Earth – extinctions, overharvesting, pollution of lakes and the ocean, and invasive weeds among other things. In some sense ecologists are like the priests of old, warning us that God or some spiritual force will punish us if we violate some commandments or regulations. In our case it is the Earth that suffers from poorly thought out human alterations, and, in a nutshell, CO2 is the new god that will indeed guarantee that the end is near. No one really wants to hear or believe this, if we accept the polls taken in North America.

So the bottom line for ecologists should be to concentrate on the complex questions posed by the biological world, and try first to understand the problems and second to suggest some way to solve them. Much easier said than done, as we can see from the current economic mess in what might be a sister science.

Piketty, T. 2014. Capital in the Twenty-First Century. Belknap Press, Harvard University, Boston. 696 pp. ISBN 9780674430006

Back to p-Values

Alas ecology has slipped lower on the totem-pole of serious sciences by an article that has captured the attention of the media:

Low-Décarie, E., Chivers, C., and Granados, M. 2014. Rising complexity and falling explanatory power in ecology. Frontiers in Ecology and the Environment 12(7): 412-418. doi: 10.1890/130230.

There is much that is positive in this paper, so you should read it if only to decide whether or not to use it in a graduate seminar in statistics or in ecology. Much of what is concluded is certainly true, that there are more p-values in papers now than there were some years ago. The question then comes down to what these kinds of statistics mean and how this would justify a conclusion captured by the media that explanatory power in ecology is declining over time, and the bottom line of what to do about falling p-values. Since as far as I can see most statisticians today seem to believe that p-values are meaningless (e.g. Ioannidis 2005), one wonders what the value of showing this trend is. A second item that most statisticians agree about is that R2 values are a poor measure of anything other than the items in a particular data set. Any ecological paper that contains data to be analysed and reported summarizes many tests providing p-values and R2 values of which only some are reported. It would be interesting to do a comparison with what is recognized as a mature science (like physics or genetics) by asking whether the past revolutions in understanding and prediction power in those sciences corresponded with increasing numbers of p-values or R2 values.

To ask these questions is to ask what is the metric of scientific progress? At the present time we confuse progress with some indicators that may have little to do with scientific advancement. As journal editors we race to increase their impact factor which is interpreted as a measure of importance. For appointments to university positions we ask how many citations a person has and how many papers they have produced. We confuse scientific value with some numbers which ironically might have a very low R2 value as predictors of potential progress in a science. These numbers make sense as metrics to tell publication houses how influential their journals are, or to tell Department Heads how fantastic their job choices are, but we fool ourselves if we accept them as indicators of value to science.

If you wish to judge scientific progress you might wish to look at books that have gathered together the most important papers of the time, and examine a sequence of these from the 1950s to the present time. What is striking is that papers that seemed critically important in the 1960s or 1970s are now thought to be concerned with relatively uninteresting side issues, and conversely papers that were ignored earlier are now thought to be critical to understanding. A list of these changes might be a useful accessory to anyone asking about how to judge importance or progress in a science.

A final comment would be to look at the reasons why a relatively mature science like geology has completely failed to be able to predict earthquakes in advance and even to specify the locations of some earthquakes (Steina et al. 2012; Uyeda 2013). Progress in understanding does not of necessity dictate progress in prediction. And we ought to be wary of confusing progress with p-and R2 values.

Ioannidis, J.P.A. 2005. Why most published research findings are false. PLoS Medicine 2(8): e124.

Steina, S., Gellerb, R.J., and Liuc, M. 2012. Why earthquake hazard maps often fail and what to do about it. Tectonophysics 562-563: 1-24. doi: 10.1016/j.tecto.2012.06.047.

Uyeda, S. 2013. On earthquake prediction in Japan. Proceedings of the Japan Academy, Series B 89(9): 391-400. doi: 10.2183/pjab.89.391.

Are We Destroying the Planet?

My question for everyone to ask themselves today is this: are we humans destroying Planet Earth? This is perhaps a strange question to ask and one would expect most people to say, ‘no, of course not’. So perhaps we should put a constraint on this question that this pertains to the next 100-200 years. So it is not an immediate question, something that will happen in the coming six months, but a long-term question about what will happen in the next centuries.

So the immediate response is, ‘how could we be destroying the whole of planet Earth?’ The answer might be to look at the newspaper this week, and ask yourself what will possibly happen when we run out of resources. Like food and water. As a simple paradigm of our problems we might use the sewage disposal problem of Victoria, BC. Victoria for years has simply dumped its untreated sewage out into the ocean in the Strait of Juan de Fuca. The ocean, as we seem to believe, is a very large garbage dump. But might we think that a useful assumption of a civilized society is that you should not dump your garbage across the fence into your neighbour’s back yard? So then we say, we need to spend the money to construct a proper treatment plant. But the Victoria-area municipalities cannot even agree on a location for the sewage plant, and there are loud protests that we cannot possibly afford a modern treatment plant. What can we say about humans who think it is acceptable to dump their garbage over the fence into the ocean? One interpretation is that they have made the correct decision, and this will not affect them during their lifetime since it has been going on now for more than 100 years, so carry on. Yet this is a perfect mimic of the problems of the world today.

Climate change is all about what we dump into the atmosphere, in particular greenhouse gases and perhaps most obviously CO2. But we take no responsibility for this because it will not affect us in our lifetime and surely some clever engineer will solve this problem in the next century. Preferably at no cost to the taxpayers.

So yes, you might argue that we are indeed destroying the planet. But since Victoria, BC, and indeed all of Canada are only a small part of the global problem because of a low population base, why should we have to do anything? Well, many people think we should be doing something, but yet the majority continue to elect politicians who ignore the three major problems of the world today – climate change, population growth, and food security or at best say they will do something about it by 2020 or 2050. Most of the political parties of the developed world today subscribe to three propositions – growth is good and more growth is better, climate change is a minor problem, and implicitly we do not care one bit about what kind of a world we leave to our children and grandchildren. Spend now, they can pay later.

Now you will be hard pressed to find any business person or politician of any stripe saying any of these things, and all will protest loudly that they are doing all the right things. In their minds the main problems of our day are that taxes are too high and must be reduced, and that the 1% must be let free to improve the world as they choose.

None of this of course is ecological science or even sustainability science. The argument rests on only one simple principle – that the environment is not a garbage can. And what we do now impinges on what kind of Earth we wish to leave to the coming generations. So it might help to ask your favourite politician if he or she thinks we are destroying the Earth, and if not, why they do not read the newspapers. And why they do nothing about the major problems of our day?

Ehrlich, Paul R. and Ehrlich, Anne H. (2013). Can a collapse of global civilization be avoided? Proceedings of the Royal Society B: Biological Sciences 280, 20122845. doi: 10.1098/rspb.2012.2845.

Ehrlich, Paul R. and Ehrlich, Anne H. (2013). Future collapse: how optimistic should we be? Proceedings of the Royal Society B: Biological Sciences 280, 20131373. doi: 10.1098/rspb.2013.1373.

Kelly, Michael J. (2013). Why a collapse of global civilization will be avoided: a comment on Ehrlich & Ehrlich. Proceedings of the Royal Society B: Biological Sciences 280. doi: 10.1098/rspb.2013.1193.

The Snowshoe Hare 10-year Cycle – A Cautionary Tale

We have been working on the ten-year cycle of snowshoe hares (Lepus americanus) in the southwest Yukon since 1975 trying to answer the simple question of what causes these cyclic fluctuations. I think that we now understand the causes of the cyclic dynamics, which is not to say all things are known but the broad picture is complete. But some misunderstanding persists, hence this one page summary. Some biology first.

The snowshoe hare cycle has been known from Canada lynx fur return data for more than 100 years, and of course known to First Nations people much before that. Hares are herbivores of small trees and shrubs, they reproduce at age 1 and rarely live more than 1-2 years. They have 2-4 litters in a summer, with litter size around 4-6. Juvenile losses are high and at best populations increase about three-to-four-fold per year. Almost everything eats them – lynx, coyotes, great-horned owls, goshawks, a long list of predators on the young. Reproduction collapses with rising density and females reduce their output from 4 litters to 2 in the peak and decline phase.

The obvious driving factors when Lloyd Keith and his students began working on the hare cycle in Alberta in the 1960s were winter food shortage and predation. When there is a high hare peak, damage to shrubs and small trees is obvious. But it was quite clear in Keith’s studies that the decline phase continued well after the vegetation recovered, and so he postulated a two-factor explanation, winter food shortage followed by high predation losses. He looked for disease and parasite problems in hares but found nothing.

Testing the winter food limitation would appear to be simple but is fraught with problems. Everyone believes that food is an ultimate limiting factor, so that it must be involved in the cyclic dynamics. We began testing food limitation in the mid-1970s and found that one could add natural food or artificial food (rabbit chow) and apparently have no effect on cyclic dynamics. Hares came to the food grids so the density increased by immigration, but the decline started at the same time and at the same rate as on control grids. So what is the role of food?

Our next attempt was to do a factorial experiment adding food, reducing predation, and doing both together. The details are important, replication was never enough for the manipulated treatments, we did it only for 10 years rather than 20 or 30. What we found was that there was an interaction between food addition and mammal predator exclusion so that the combined treatment increased to a much higher density than any single treatment. But this result came with a puzzle. What is the role of food? Hares showed no evidence of malnutrition in the peak or decline, fed hares did not increase their reproductive output. What produced the strong interaction between food addition and predator reduction?

The next breakthrough came when Rudy Boonstra suggested that predator-caused stress might underlie these strange dynamics. Because we could now measure stress with faecal cortisol measures we could test for stress directly in free-ranging hares. The surprise was that this idea worked and Michael Sheriff capped off the stress hypothesis by showing that not only does predator-induced stress reduce reproductive rates, but the stress effect is inherited maternally in the next generation.

The bottom line: the whole dynamics of the snowshoe hare cycle are predator-induced. All the changes in mortality and reproduction are direct and indirect effects of predators chasing and eating hares. The experimental food/predator interaction was mechanistically wrong in targeting food as a major limiting factor.

This of course does not mean that food is irrelevant as an important factor to study in hare cycles. In particular very high peak populations damage shrubs and small trees and we do not yet have the details of how this works out in time. Secondary chemicals are certainly involved here.

Why does all this matter? Two points. First, the hare cycle is often trumpeted as an example of a tri-trophic interaction of food – hares – predators, when in fact it seems to be a simple predator-prey system, as Lotka suggested in 1925. Models of the hare cycle have proliferated over time, and there are far more models of the cycle in existence than there are long-term field studies or field experiments. It is possible to model the hare cycle as a predator-prey oscillation, as a food plant-hare oscillation, as a parasite-hare interaction, as a cosmic particle – hare oscillation, as an intrinsic social – maternal effects interaction, and I have probably missed some other combinations of delayed-density dependent factors that have been discussed. That one can produce a formal mathematical model of the hare cycle does not mean that the chosen factor is the correct one.

The other point I would leave you with is the large amount of field work needed to sort out the mechanisms driving the population dynamics of hares. Ecology is not simple. This enigma of the ten-year cycle has always been a classic example in ecology and perhaps it is now solved. Or perhaps not?

Boonstra, R., D. Hik, G. R. Singleton, and A. Tinnikov. 1998. The impact of predator-induced stress on the snowshoe hare cycle. Ecological Monographs 68:371-394.

Boutin, S., C. J. Krebs, R. Boonstra, M. R. T. Dale, S. J. Hannon, K. Martin, A. R. E. Sinclair, J. N. M. Smith, R. Turkington, M. Blower, A. Byrom, F. I. Doyle, C. Doyle, D. Hik, L. Hofer, A. Hubbs, T. Karels, D. L. Murray, V. Nams, M. O’Donoghue, C. Rohner, and S. Schweiger. 1995. Population changes of the vertebrate community during a snowshoe hare cycle in Canada’s boreal forest. Oikos 74:69-80.

Keith, L. B., and L. A. Windberg. 1978. A demographic analysis of the snowshoe hare cycle. Wildlife Monographs 58:1-70.

Keith, L. B. 1990. Dynamics of snowshoe hare populations. Current Mammalogy 4:119-195.

Krebs, C. J., S. Boutin, R. Boonstra, A. R. E. Sinclair, J. N. M. Smith, M. R. T. Dale, K. Martin, and R. Turkington. 1995. Impact of food and predation on the snowshoe hare cycle. Science 269:1112-1115.

Krebs, C. J., S. Boutin, and R. Boonstra, editors. 2001. Ecosystem Dynamics of the Boreal Forest: the Kluane Project. Oxford University Press, New York.

Sheriff, M. J., C. J. Krebs, and R. Boonstra. 2009. The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. Journal of Animal Ecology 78:1249-1258.

Yan, C., N. C. Stenseth, C. J. Krebs, and Z. Zhang. 2013. Linking climate change to population cycles of hares and lynx. Global Change Biology 19:3263-3271.

The Conservative Agenda for Ecology

Many politicians that are conservative are true conservatives in the traditional meaning of the term. Many business people are conservative in the same way, and that is a good thing. But there exist in the world a set of conservatives that have a particularly destructive agenda based on a general belief that evidence, particularly scientific evidence, is not any more important as a basis for action than personal beliefs. Climate change is the example of the day, but there are many others from the utility of vaccinations for children, to items more to an ecologist’s interest like the value of biodiversity. In a sense this is a philosophical divide that is currently producing problems for ecologists in the countries I know most about, Canada and Australia, but possibly also in the USA and Britain.

The conservative political textbook says cut taxes and all will be well, especially for the rich and those in business, and then say ‘we have no money for ‘<fill in the blank here> ‘so we must cut funding to hospitals, schools, universities, and scientists’. The latest example I want to discuss is from the dismemberment of the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Australia by the current conservative government.

CSIRO was sent up in the 1950s to do research for the betterment of the people of Australia. Throughout the 1960s, 1970s and 1980s it was one of the world premier research organizations. If you do not believe this you can look at how many important papers, awards, and the occasional Nobel Prize came out of this organization. It had at this time perhaps 8500 employees in more than 25 Divisions. Divisions varied in size but in general they would have about 200-300 scientists and technicians. Divisions were run by a Chief who was a scientist and who decided the important directions for research in his or her area, whether it be horticulture, wildlife, energy technology, animal science, or mathematics and statistics. CSIRO itself was led by eminent scientists who provided some guidance to the Divisions but left the directions of science to the Chiefs and their scientists. It was a golden development for Australian science and a model for science that was appreciated all around the world.

This of course is dreamland in today’s world. So by the late 1980s the Australian federal government began determining scientific priorities for CSIRO. We know what science is important, the new leaders said, so do this. This would work well if it was not guided by politicians and MBAs who had no scientific training and knew nothing about science past or present. Piled on this were two neo-conservative philosophies. First, science is important only if it generates money for the economy. Coal mining triumphs wildlife research. Second, science in the public interest is not to be encouraged but cut. The public interest does not generate money. Why this change happened can be declared a mystery but it seemed to happen all around the western world in the same time frame. Perhaps it had something to do with scientific research that had the obvious message that one ought to do something about climate change or protecting biodiversity, things that would cost money and might curtail business practices.

Now with the current 2014 budget in Australia we have a clear statement of this approach to ecological science. The word from on high has come down within CSIRO that, because of cuts to their budget, one goal is as follows: “Reduce terrestrial biodiversity research (“reduced investment in terrestrial biodiversity with a particular focus on rationalising work currently conducted across the “Managing Species and Natural Ecosystems in a Changing Climate” theme and the “Building Resilient Australian Biodiversity Assets” theme in these Divisions”).Translated, this means about 20% of the staff involved in biodiversity research will be retrenched and work will continue in some areas at a reduced level. At a time when rapid climate change is starting, it boggles the mind that some people at some high levels think that supporting the coal and iron ore industry with government-funded research is more important than studies on biodiversity. (If you appreciate irony, this decision comes in a week when it is discovered that the largest coal company in Australia, mining coal on crown land, had profits of $16 billion last year and paid not one cent of tax.)

So perhaps all this illustrates that ecological research and all public interest research is rather low on the radar of importance in the political arena in comparison with subsidizing business. I should note that at the same time as these cuts are being implemented, CSIRO is also cutting agricultural research in Australia so biodiversity is not the only target. One could obtain similar statistics for the Canadian scene.

There is little any ecologist can do about this philosophy. If the public in general is getting more concerned about climate change, the simplest way to deal with this concern for a politician is to cut research in climate change so that no data are reported on the topic. The same can be said about biodiversity issues. There is too much bad news that the environmental sciences report, and the less information that is available to the public the better. This approach to the biosphere is not very encouraging for our grandchildren.

Perhaps our best approach is to infiltrate at the grass roots level in teaching, tweeting, voting, writing letters, and attending political meetings that permit some discussion of issues. Someday our political masters will realize that the quality of life is more important than the GDP, and we can being to worry more about the future of biodiversity in particular and science in general.

 

Krebs, C.J. 2013. “What good is a CSIRO division of wildlife research anyway?” In Science under Siege: Zoology under Threat, edited by Peter Banks, Daniel Lunney and Chris Dickman, pp. 5-8. Mosman, N.S.W.: Royal Zoological Society of New South Wales.

Oreskes, Naomi, and Erik M.M. Conway. 2010. Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. New York: Bloomsbury Press. 355 pp. ISBN 978-1-59691-610-4

Shaw, Christopher. 2013. “Choosing a dangerous limit for climate change: Public representations of the decision making process.” Global Environmental Change 23 (2):563-571. doi: 10.1016/j.gloenvcha.2012.12.012.

Wilkinson, Todd. 1998. Science Under Siege: The Politicians’ War on Nature and Truth. Boulder, Colorado: Johnson Books. 364 pp. ISBN 1-55566-211-0

 

On Journal Referees

I have been an editor of enough ecological journals to know the problems of referees first hand. The start is to try to find a referee for a particular paper. I would guess now that more than two-thirds of scientists asked to referee a potential paper say they do not have time. This leads to another question of why no one has any time to do anything, but that is a digression. If one is fortunate you get 2 or 3 good referees.

The next problem comes when the reviews of the paper come back. Besides dealing with the timing of return of the reviews, there are four rules which ought to be enforced on all referees. First, review the potential paper as it is. Do not write a review saying this is what you should have written- that is not your job. Second, if the paper is good enough, be positive in making suggestions for improvement. If it is not good enough in your opinion, try to say so politely and suggest alternate journals. Perhaps the authors are aiming for a journal that is too prestigious. Third, do not say in so many words that the author should cite the following 4 papers of mine…. And fourth, do not make ad hominem attacks on the authors. If you do not like people from Texas, this is not the place to take it out on the particular authors who happen to live there.

Given the reviews, the managing editor for the paper ought to make a judgment. Some reviews do not follow the four rules above. A good editor discards these and puts a black mark on the file of that particular reviewer. I would not submit a referee’s review to the authors if it violated any of the above 4 rules. I have known and respected editors who operated this way in the past.

The difficulty now is that ecological journals are overrun. This is driven in part by the desire to maximize the number of papers one publishes in order to get a job, and in part by journals not wanting to publish longer papers. Journals do not either have the funding or the desire to grow in relation to the number of users. This typically means that papers are sent out for reviews with a note attached saying that we have to reject 80% or so of papers regardless of how good they are, a rather depressing order from above. When this level of automatic rejection is reached, the editor in chief has the power to reject any kinds of papers not in favour at the moment. I like models so let’s publish lots of model papers. Or I like data so let’s publish only a few model papers.

One reason journals are overrun is that many of the papers published in our best ecology journals are discussions of what we ought to be doing. They may be well written but they add nothing to the wisdom of our age if they simply repeat what has been in standard textbooks for the last 30 years. In days gone by, many of these papers I think might have been given as a review seminar, possibly at a meeting, but no one would have thought that they were worthy of publication. Clearly the editors of some of our journals think it is more important to talk about what to do rather than to do it.

I think without any empirical data that the quality of reviews of manuscripts has deteriorated as the number of papers published has increased. I often have to translate reviews for young scientists who are devastated by some casual remark in a review. “Forget that nonsense, deal with this point as it is important, ignore this insult to your supervisor, go have a nice glass of red wine and relax, ……”. One learns how to deal with poor reviews.

I have been reading Bertram Murray’s book “What Were They Thinking? Is Population Ecology a Science?” (2011), unfortunately published after he died in 2010. It is a long diatribe about reviews of some of his papers and it would be instructive for any young ecologist to read it. You can appreciate why Murray had trouble with some editors just from the subtitle of his book, “Is Population Ecology a Science?” It illustrates very well that even established ecologists have difficulty dealing with reviews they think are not fair. In defense of Murray, he was able to get many of his papers published, and he cites these in this book. One will not come away from this reading with much respect for ornithology journals.

I think if you can get one good, thoughtful review of your manuscript you should be delighted. And if you are rejected from your favourite journal, try another one. The walls of academia could be papered with letters of rejection for our most eminent ecologists, so you are in the company of good people.

Meanwhile if you are asked to referee a paper, do a good job and try to obey the four rules. Truth and justice do not always win out in any endeavour if you are trying to get a paper published. At least if you are a referee you can try to avoid these issues.

Barto, E. Kathryn, and Matthias C. Rillig. 2012. “Dissemination biases in ecology: effect sizes matter more than quality.” Oikos 121 (2):228-235. doi: 10.1111/j.1600-0706.2011.19401.x.

Ioannidis, John P. A. 2005. “Why most published research findings are false.” PLoS Medicine 2 (8):e124.

Medawar, P.B. 1963. “Is the scientific paper a fraud?” In The Threat and the Glory, edited by P.B. Medawar, 228-233. New York: Harper Collins.

Merrill, E. 2014. “Should we be publishing more null results?” Journal of Wildlife Management 78 (4):569-570. doi: 10.1002/jwmg.715.

Murray, Bertram G., Jr. 2011. What Were They Thinking? Is Population Ecology a Science? Infinity Publishing. 310 pp. ISBN 9780741463937

 

When Should One Retire from a University Appointment?

In the good old days universities had a hard retirement policy that once you reached age 65 you were retired whether you liked it or not. Then in the age of entitlement it was declared that this was discrimination on the basis of age and thus could not be allowed. Universities bemoaned the fact that they had no firm financial projections under the new policy, and many different policies were introduced partly to solve this problem. In some cases you could gradually go to half-time, and then at some age to quarter time, until you eventually did retire, but most of these policies were voluntary.

It is useful to look at the broad picture that these changes produced in the university community. If there was indeed some general plan of development in a particular discipline like zoology, committees could lay out a future hiring plan but it was usually chaos because the time frame was so uncertain. So in my experience most carefully thought out hiring plans went out the window and hiring became ad hoc with the accompanying ‘departmental drift’. So, as a hypothetical example, if a professor in entomology retired, he or she might get replaced by a young assistant professor in microbial genetics.

On a larger scale, we need to look carefully at the consequences of keeping older professors on the books commandeering relatively large salaries. There are no clear rules but in general one might recognize professors that are worn out at age 55 and ought to retire, others that are happy to stop at 65 and relax more, and others who ask to stay on indefinitely. Every case is an individual one. Some of the age 55 scientists are still vigorous and any concerned department ought to work to make their life easier so they can continue to work. Others of the same age should be encouraged to go. The same should occur at age 65. The worry I have most is about those over 65. I give no names but I can list brilliant scientists who continued to be paid and work until they were 75 or 80. I can also list scientists who were brilliant in their time but had passed the gate by 65 (or even 55) but insisted in taking up a position for many years after age 65. This is a tragedy for the individual, for the department, and in particular for young scientists looking for a university position but finding none because the money is tied up in professors well past their use-by-date. I would expect that the only possible solution to this issue is for the university to evaluate every professor over 55 with strict demands of performance if they wish to remain on the payroll and to do this on a 1 or 2 year timetable. No one likes doing such evaluations so perhaps the university would have to hire one of the many hard-nosed CEOs of companies that are seen to be effective at firing all their workers.

None of this is to say that any and all professors who have retired at age 55, 65, 75, or 85 should not be encouraged to continue research work, but they must do it on their retirement savings. In my youth I met a 98 year old Drosophila researcher who was continuing to do valuable research in his long retirement. In Canada the federal research agencies do not seem to care how old you are when they evaluate the quality of your research work and contributions to science, so they at least do not appear to discriminate in awarding research funds on the basis of age. Scientific journals do not ask you how old you are when you submit a potential scientific paper.

There has always been a paradigm that scientific advances are made entirely by young scientists, so that, as the joke goes, almost all mathematicians should be shot after age 30 (that is a joke….). In at least some of the ecological sciences this age paradigm is not correct, but nevertheless I think it is morally recumbent on older professors to realize that their time on the payroll should be limited in order to release funds for the aspiring young scientists who can rejuvenate university departments.