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Glaciation

Outline of topics in this section:

1) Causes of glaciation

2) Pleistocene glaciation

3) Changes associated with glaciation
4) Biogeographic consequences

5) Evolutionary consequences

6) Extinctions
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Biogeographic Consequences

Retreat of the Wisconsin Glaciers
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Biogeographic Consequences

Latitudinal Shift in Biomes — the Mississippi valley and Eastern North America
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Biogeographic Consequences

Elevational Shift in Biomes — the Andes

Shifts in vegetation zones in
Eastern Cordillera of Colombian
Andes Mountains following last
glacial maximum

(from Lomolino et al. 2010)

LGM: 14,000 — 20,000 years bp
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Biogeographic Consequences

Elevational Shift in Biomes
LGM: 14,000 — 20,000 years bp
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Biogeographic Consequences

Range shifts in mammals

With resulting differences in extent and direction of range shifts during the Holocene,
species that co-occurred during the last glacial maximum exhibit disjunct ranges today.

Black dots show areas where species co-occurred during late Pleistocene (based on fossils)

Shrews, lemmings, and squirrels Lemmings, chipmunks, prairie dogs
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(from Lomolino et al. 2010)
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Biogeographic Consequences

Biotic Exchanges

Terrestrial interchange between Africa and
Asia

Terrestrial interchange, chiefly from south-
cast Asia to Australia and New Guinea
Marine interchange across the tropical Atlan-
tic

Marine interchange across the North Pacific,
mainly from west to east

5a.Great American interchange for lowland

rain-forest organisms, chiefly from south to
north

5b.Great American interchange for savanna and

b— —

~S 0 N

upland organisms, symmetrical during the
Pliocene, mainly north to south subsequently
Transequatorial marine interchange in the
eastern Pacific, mainly from north to south
during the Pliocene, of unknown direction-
ality subsequently

. Marine trans-Arctic interchange
. Marine interchange across the North Atlan-

tic, mainly from east to west
Transequatorial marine interchange in the
eastern Atlantic

Circum-Antarctic marine interchange
Marine interchange across the tropical Pacif-
ic, mainly from west to east

. Trans-Suez interchange (Recent only)

(from Vermeij 1991)

Pleistocene

Great American Interchange: Exchange of mammals between
North and South America following formation of Central

American land bridge ~ 3.5 million years ago.




Biogeographic Consequences

Biotic Exchanges

With Great American Interchange, Central American land bridge was more of a filter
than a highway. Interchange was greater during glacial periods when savanna habitats
covered much of Central and South America.

Southern Origin

Porcupines
Glyptodonts
Armadillos

Giant ground sloths
Opossums

Northern Origin

Rabbits Mastodons
Field mice Horses
Foxes Tapirs
Bears Peccaries
Raccoons Camels
Weasels Deer

Cats




Biogeographic Consequences

Biotic Exchanges

Filtering dispersal route lead to asymmetric biotic exchange e

Three potential advantages leading to bias of northern forms
in South America:

1) They were better migrators

Formation of
land bridge
~ 3.5 mya

2) They were better survivors and diversified more readily

3) They were better competitors

* What predictions could we make based on Janzen’s Hypothesis?



Evolutionary Consequences

Speciation

The major evolutionary consequence of glaciation was the abundance of opportunities
for isolation and subsequent divergence through genetic drift and novel selection
pressures.

Speciation Pump: the generation of diversity due to repeated fragmentation,
allopatric speciation, and reconnection of fauna during the glacial/interglacial cycles
of the Pleistocene.

(from Haffer 1969)



Evolutionary Consequences

Pleistocene Speciation Pump

Superspecies: monophyletic group of two or more allospecies (geographically separated)
or semi-species (connected geographically by a narrow hybrid zone) that have just crossed
the species threshold and are presumed to be the youngest species in an avifauna

(Weir & Schluter 2004).
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Evolutionary Consequences

Pleistocene Speciation Pump
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Evolutionary Consequences

Pleistocene Speciation Pump

Percent sequence divergence in superspecies
groups residing in different regions

Shaded area indicates Pleistocene
More recent divergence in boreal

superspecies during Pleistocene
(during time of glacial cycles)

* Applied a GTR-gamma model of mtDNA sequence evolution:

2.2% divergence for every 1 million years of separation

(from Weir and Schluter 2004)
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Evolutionary Consequences

Glaciation and the origin of phylogroups (or superspecies)

e.g., All of British Columbia’s fish fauna must have come from refugial populations.
Some species were isolated in multiple refugia (about 21 species in total), giving
potential for intraspecific divergence.

From

Bering
Refuge \

From
Mississippi
Refuge

(from McPhail and Lindsey 1970)



Evolutionary Consequences

Glaciation and the origin of phylogroups (or superspecies)

Bull Trout (Salvelinus confluentus) Dolly Varden (Salvelinus malma malma) Arctic Char (Salvelinus alpinus alpinus)
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Evolutionary Consequences

Glaciation and the origin of phylogroups (or superspecies)

e.g., bull trout (Salvelinus confluentus)
SR
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(from Taylor et al. 1999)
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Evolutionary Consequences

Glaciation and the origin of phylogroups (or superspecies)

e.g., Anadromous fish species have given rise to freshwater populations that do not go
to sea and may differ greatly from the parental species in appearance and ecology.

(In BC we see this in salmon, lampreys, sticklebacks and smelt)

Pygmy smelt in Pitt Lake, Harrison
Lake, and Lake Washington.

Longfin smelt (Spirinchus thaleichthys)
in the ocean.
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Evolutionary Consequences

Glaciation and the origin of phylogroups (or superspecies)

e.g., Anadromous fish species have given rise to freshwater populations that do not go
to sea and may differ greatly from the parental species in appearance and ecology.

(In BC we see this in salmon, lampreys, sticklebacks and smelt)

Benthic (top) and limnetic stickleback
(Gasterosteus aculeatus) from Paxton Lake
on Texada Island, BC
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Evolutionary Consequences

What was happening in the tropics during the Pleistocene?

Old view:

Refugia hypothesis (Haffer 1969): Islands of lowland rain forest persisted during glacial
maxima. Developed a model of “cyclic vicariance” where species were separated through
fragmentation during dry glacial periods.

Pleistocene rainforest refugia




Depth (cm)

Evolutionary Consequences

What was happening in the tropics during the Pleistocene?
Developing view:

Refugia hypothesis was largely based on inferences from current species distribution
patterns, but not based on paleoecological data.
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Depth (cm)

Evolutionary Consequences

What was happening in the tropics during the Pleistocene?
Developing view:

Fossil pollen data from lake cores show continuous forest cover and invasion by
cold-adapted species during last glacial maximum.
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Evolutionary Consequences

Alternative hypotheses for Refugia-like distributions?

Amazonian Ecoregions divided by large river systems are also consistent with
range limits across species group




Evolutionary Consequences

Alternative hypotheses for Refugia-like distributions?

Phylogenetic relationships of trumpeter species in South America.

Distributions show that species ranges are separated by large river systems.
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Evolutionary Consequences
Alternative hypotheses for Refugia-like distributions?

Phylogenetic relationships of trumpeter species in South America.
Timing of diversification events indicates speciation prior to most recent glacial maxima.
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Evolutionary Consequences

Alternative hypotheses for Refugia-like distributions?

Phylogenetic relationships of trumpeter species in South America.
Hypothesis for diversification of trumpeters following establishment of river barriers
(a) (b)

a) 3.0 — 2.7 mya: western lowland Amazon is a large
interconnected wetland system

b) 2.7 — 2.0 mya: wetland system drained and lower
Amazon River was established

(d)

c) 2.0 — 1.0 mya: Rio Madeira drainage established

d) 1.3 — 0.8 mya: Rio Tapajos drainage established

e) 1.0 — 0.7 mya: isolating barrier with lower Rio
Negro formed

f) 0.8 — 0.3 mya: two drainage systems on Brazilian
shield (Rio Tocatins and Xingu) established

Ribas et al. 2012




Extinctions

Massive extinctions of terrestrial mammals occurred during late Pleistocene in both North
and South America. Large-bodied mammals appear to have been particularly vulnerable.
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Extinctions

Note that North and South American species appeared to suffer much greater extinctions
than comparable-sized mammals on other continents (up to 76% of all genera).
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Extinctions

These mass extinctions have been suggested to occur as a result of glaciation-induced
climate changes and/or "overkill" by human hunters that colonized North America (and
subsequently South America) via the Bering land bridge (the latter is a contentious idea).
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