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Abstract

Motivation: Biodiversity databases now comprise hundreds of thousands of sequences and trait

records. For example, the Open Tree of Life includes over 1 491 000 metazoan and over 300 000

bacterial taxa. These data provide unique opportunities for analysis of phylogenetic trait distribu-

tion and reconstruction of ancestral biodiversity. However, existing tools for comparative phylo-

genetics scale poorly to such large trees, to the point of being almost unusable.

Results: Here we present a new R package, named ‘castor’, for comparative phylogenetics on large

trees comprising millions of tips. On large trees castor is often 100–1000 times faster than existing tools.

Availability and implementation: The castor source code, compiled binaries, documentation and

usage examples are freely available at the Comprehensive R Archive Network (CRAN).

Contact: louca.research@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advance of high-throughput sequencing generates whole genome

sequences and marker gene-based phylogenies at rapidly increasing

rates. For example, the SILVA 16S ribosomal RNA reference tree cur-

rently contains �570 000 bacterial and archaeal tips (Quast et al.,

2013). Further, machine learning algorithms enable the automated in-

ference of metabolic phenotypes for thousands of microbial genomes

(Karp et al., 2010). These phylogenetic and phenotypic data provide

unprecedented opportunities for large-scale evolutionary analysis,

such as reconstruction of past metabolic diversity and phenotype pre-

dictions for poorly characterized extant clades. However, these vast

data also present a serious challenge for existing phylogenetics tools.

Most existing phylogenetic packages (e.g. FitzJohn, 2012; Paradis

et al., 2004; Revell, 2012) have been designed for much smaller trees

containing at most a few thousand tips, and thus scale poorly to large

datasets. For example, a simple task such as pruning tips from the

SILVA tree can take several hours on a modern laptop using the popu-

lar software package ape (Paradis et al., 2004). Similarly, ancestral

state reconstruction (ASR) for a binary trait with standard

continuous-time Markov models (Mk models) takes several hours on

the SILVA tree using ape. A simple power-law analysis reveals that

these functions exhibit a time complexity that scales roughly quadrati-

cally with tree size. Re-designed efficient algorithms for large-scale

phylogenetic analysis are thus urgently needed. This need is intensified

when reconstructions are nested into cross-validation or bootstrap-

ping algorithms. As we explain below, super-linear time complexities

can be avoided using redesigned algorithms optimized for large trees.

Here we present a new package for the R statistics environment

that enables phylogenetic analysis using algorithms optimized for

large trees. We named this package ‘castor’, after the animal able

to fell large trees. castor emerged as part of our work on large mi-

crobial phylogenies (including hundreds of thousands of strains),

which necessitate more efficient implementations of common func-

tions than currently available.

2 Materials and methods

2.1 castor: a collection of highly optimized algorithms
castor provides efficient implementations of common phylogen-

etic functions, focusing on analysis of trait evolution on fixed trees.
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Notably, castor provides functions for ASR of discrete traits, for

example using Mk models (Yang et al., 1995) or maximum-

parsimony methods, as well as ASR of continuous traits, for ex-

ample using squared-change parsimony (Maddison, 1991). Further,

castor includes functions for hidden state prediction, i.e. for esti-

mating a priori unknown trait values (states) in tips based on a sub-

set of tips with known states (Zaneveld and Thurber, 2014).

castor also enables statistical analysis of trait distribution, such as

calculating phylogenetic autocorrelation, for simulating or fitting

models of trait evolution, as well as for common operations such as

tree pruning, inference of most recent common ancestors or calculat-

ing distances between tips. castor fully supports monofurcating

and multifurcating trees, in contrast to the majority of existing tools

that generally require bifurcating trees.

2.2 Comparison to existing software
Most of castor’s functions exhibit a time complexity that scales

linearly with tree size, in many cases achieving a 100- to 1000-fold

efficiency when compared to existing packages (Fig. 1 and

Supplementary Fig. S1). For example, removing 50% of the tips

from the SILVA tree takes less than 1 s on a modern laptop using

castor and over 4 h using the package ape (Fig. 1C). Similarly,

maximum-likelihood ASR of a discrete trait on the SILVA tree using

an Mk model (5 possible states, all rates equal) takes about 30 s

using castor and over 4 h using ape (Fig. 1B). castor’s high effi-

ciency is achieved in multiple ways. First, dynamic programming al-

gorithms are used wherever possible. Second, most algorithms

benefit from auxiliary data structures that are temporarily created

on demand. For example, calculation of most recent common ances-

tors is achieved in linear time (Fig. 1D) by using a lookup table that

maps each node to its parent node, instead of repeatedly searching

for each node’s parent amongst all possible nodes. Third, in certain

ASR algorithms involving rerooting (e.g. maximum-likelihood Mk

models) redundant calculations are avoided by storing previously

computed intermediate quantities (see Supplementary Material S1).

Fourth, ASR of discrete traits using Mk models, which requires re-

peated exponentiation of the Markov transition matrix along

each edge, was accelerated through an ad-hoc exponentiation algo-

rithm that becomes highly efficient when the same matrix is expo-

nentiated several times. Fifth, castor is almost entirely

implemented in Cþþ, a programming language optimized for high-

performance computations.

3 Conclusion

castor is a collection of highly efficient algorithms for phylogen-

etic analysis on large trees, easily scaling to millions of tips.

Although castor focuses on analyzing trait distributions and re-

constructing trait evolution, it also includes several other common

functions for working with phylogenies. On large trees, castor

performs many of these functions orders of magnitude faster than

other comparable packages, thereby enabling large-scale phylogen-

etics using substantially reduced computational resources.
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Fig. 1. Comparison of computation time needed for various tree operations in

castor and other packages (time T over tree size S). (A) ASR of a discrete trait

with 5 states, using maximum-parsimony. (B) ASR of a discrete trait with 5

states, using an ‘equal rates’ Mk model with rerooting. (C) Pruning trees by

removing half of the tips. (D) Determining the most recent common ancestor

(MRCA) of two random tips. (E) Testing whether a subset of tips is monophy-

letic. (F) Simulating an Mk model (5 states) for discrete trait evolution. Note

the logarithmic axes in all figures. Package names are listed in the legends.

Fitted power-law exponents (T / Sq ) are shown next to every curve.

Compared packages include phyx (Brown et al., 2017), ape (Paradis et al.,

2004), diversitree (FitzJohn, 2012), phytools (Revell, 2012), phangorn (Schliep,

2011) and geiger (Harmon et al., 2008). Detailed functions and options used

are explained in Supplementary Material S2. For additional benchmarks of

other functions see Supplementary Figure S1
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