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a b s t r a c t 

In nature, cooperation among individuals is often accompanied by competition among the same individu- 

als for the cooperatively produced rewards. In such a situation, the evolution of cooperative and compet- 

itive investments influences each other, but previous theoretical studies mostly focused on either coop- 

eration or competition. Here we consider a generic situation in which individuals cooperatively produce 

rewards according to the continuous snowdrift game, and then rewards are divided among cooperating 

individuals according to a generalized tug-of-war game. Using adaptive dynamics and numerical simula- 

tions, we investigated the joint evolution of two continuous traits, the investment in cooperation and in 

competition, respectively. We found that competition for the division of rewards promotes evolutionary 

branching, and hence polymorphism in both the cooperative and the competitive traits. In polymorphic 

populations, cooperation levels are positively correlated with competition levels among strains, so that 

cooperators tend to benefit disproportionately from the benefits produced. We also found that the mean 

cooperation level within the population is promoted by the competition. Our results show that coevo- 

lution of cooperation and competition has qualitatively different outcomes compared to the evolution of 

only cooperation or only competition, and suggest that it is important to simultaneously consider multi- 

ple aspects of social interactions. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cooperation is a ubiquitous social interaction, and many theo-

etical studies have investigated the conditions that are necessary

or the evolution of cooperation ( Hamilton et al. 1964a,b ; Axelrod,

984 ; Nowak, 2006 ; Ohtsuki et al., 2006 ; Fletcher and Doebeli,

009 ). However, in nature social interactions are often multi-

aceted and involve various aspects of sociality. One important

spect of cooperation is the conflict over cooperatively produced

ewards. Some empirical studies have reported that cooperative

nteractions are often accompanied by competition with group

embers for the division of the cooperative rewards. For exam-

le, microbes cooperatively produce decomposition products by

haring enzymes with neighbouring cells, but they compete with

ach other for absorbing the decomposition products ( West et al.,

007 ). Animals often cooperate for hunting, but in the process of

he division of hunted prey they often compete with each other

examples include sailfish ( Herbert-Read et al., 2016 ), social spi-

ers ( Yip et al., 2017 ), Killer whales ( Hoelzel, 1991 ) and primates

 Kopp and Liebal, 2016 ). In group forming species, males often co-

peratively guard a group of females from mating with males from
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utside of the cooperative group, but they also compete within the

roup for mating with the females they guard ( Rood, 1990 ; Davies,

992 ). Simultaneous cooperation and competition also appear to

e ubiquitous in human societies ( Bouncken et al., 2015 ). 

In these examples, social interactions contain aspects of both

ooperation and competition within the cooperating group. On

he one hand, the benefit from investing in competitive ability

epends on the amount of public good produced from cooperative

ctions, and on the other hand, the benefit from an investment in

ooperation depends on the competitive ability of a cooperating

ndividual, i.e., on the share of the public good that the cooper-

ting individual is able to secure for itself. This interdependence

etween cooperation and competition can be expected to generate

ynamics for the joint evolution of these traits that are generally

ifferent from the evolution of either cooperation or competition

n isolation. Some theoretical studies also suggested the joint

volution of multiple social traits can realize new evolutionary

utcomes that are not predicted in the analysis with focusing only

ne social trait ( Brown and Taylor, 2010 ; Mullon et al., 2016 ). 

Nevertheless, cooperation and competition have been investi-

ated separately in most previous theoretical studies. For example,

he situation in which players cooperatively produce rewards that

re shared equally has been considered by using various models,

uch as the snowdrift game ( Maynard Smith, 1982 ), continuous

nowdrift game ( Doebeli et al., 2004 ) or public goods game

https://doi.org/10.1016/j.jtbi.2019.07.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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( Kagel and Roth, 1995 ; Hauert et al., 2006 ). In these models,

players either do or do not contribute (discrete strategies), or

they contribute various amounts (continuous strategies) to the

production of a public good. The public goods game also explic-

itly considers the division of cooperative rewards among group

members. However, in these games it is typically assumed that

the proportion of the division of cooperative rewards is equal,

and the evolution of competitive interactions, i.e., an evolutionary

departure from the assumption of equal shares, is not considered. 

The process of the division of rewards has also been inves-

tigated using various models. For example, in the hawk-dove

game ( Maynard Smith and Price, 1973 ) aggressive behaviour

can monopolize a reward, and division of rewards has e.g. been

investigated when there is variation in fighting ability ( Crowley,

2001 ; Dubois and Giraldeau, 2007 ) or in the response to an

opponent’s information ( Mesterton-Gibbons, 1994 ). Optimal skew

or transactional models ( Vehrencamp, 1983 ) consider situations in

which the division of the reward in the group can be controlled

by one dominant individual, and the other subordinate individuals

choose whether to join the group or not ( Keller and Reeve, 1994 ;

Reeve and Emlen, 20 0 0 ). In the tug-of-war game ( Reeve et al.,

al.1998 ) (sometimes called the “compromise model”), individuals

can change the proportion of reward division by investment in

competitive traits, and the optimization of investment in com-

petition can be investigated ( Hamilton, 2013 ). Finally, the war of

attrition game considers a similar question ( Bishop et al., 1978 ),

with a focus on optimizing wait times for reaping rewards. While

the above models have been used to address optimal behaviours or

investment in competition for the division of a reward, the produc-

tion of the reward has not been considered as an evolving quantity.

Few investigations have considered the co-occurrence of

cooperation and competition. For example, Reeve and Höll-

dobler (2007) considered co-occurrence of between-group compe-

tition and within-group competition by using a tug-of-war game,

in which the reward is first divided among groups, and then

among group members. Because the investment in between-group

competition can be considered as a kind of cooperation, this

study partially addressed the problem of competitive coopera-

tion, but it was limited in that the total amount of investment

in competition was assumed to be fixed, and players could

only optimize the ratio of between-group and within-group

competition. Barker et al. (2012) investigated the optimization

of investment in both cooperation and competition, but only

the case where the costs of cooperation and competition are

equal and linear in the amount of cooperation and competition.

Yamauchi et al. (2018) considered a situation where cooperatively

produced reward was divided among neighbours, but in their

study the proportion of the obtained reward is determined by

the amount of investment in cooperation, i.e., the investment in

cooperation and investment in competition were not indepen-

dently evolving traits. Overall, the joint evolutionary dynamics of

investment in cooperation and investment in competition for the

rewards produced by cooperation has not been investigated in

sufficient detail and generality. 

The aim of this study is to investigate the evolutionary dynam-

ics in a model in which cooperative and competitive investments

are separate and independent traits, with each trait being an

important part of the selective environment determining evolution

of the other trait. We consider a simple but general model in

which individuals cooperatively produce a public good according

to the continuous snowdrift game, and in which the public good is

divided among cooperating individuals according to a tug-of-war

game with continuously varying strategies. We investigated the

joint evolution of investment in cooperation and investment in

competition using adaptive dynamics and numerical simulations.

The model shows a rich variety of evolutionary dynamics, in-
luding evolutionary diversification in both traits, resulting in

oexistence of different combinations of cooperation and competi-

ion. Overall, the results show that considering the joint evolution

f cooperation and competition can be crucial for understanding

ocial evolution. 

. Model 

.1. Continuous snowdrift game and tug-of-war game 

In order to study the evolution of competitive cooperation, we

ombined the continuous snowdrift game ( Doebeli et al., 2004 )

nd the tug-of-war game ( Reeve et al., 1998 ) in a single model for

volutionary dynamics. 

In the continuous snowdrift game, two individuals coopera-

ively produce rewards based on their amount of investment in

ooperation, which is a continuous trait hereafter called cooper-

tion level or cooperative investment. The amount of produced

eward is an increasing function of the sum of the investments

f two individuals. In addition, each individual pays a cost, which

s an increasing function of an individual’s investment. In the re-

ulting continuous game, it is known that evolutionary branching

n the cooperation level can occur, i.e., even if the population

s monomorphic initially, selection often causes diversification

 Doebeli et al., 2004 ). In this case, cooperation levels become

imorphic, i.e., more cooperative and less cooperative individuals

oexist within the evolving population. In the continuous snow-

rift game, evolutionary branching occurs only when both the

eward and the cost functions have concave shapes ( Doebeli et al.,

004 , see also Appendix A1 ). 

In the tug-of-war game ( Reeve et al., 1998 ), each individual has

 continuous trait that determines the investment in competition,

r the competition level. Two individuals compete with each other

or a reward, and the proportion of the reward obtained depends

n the relative amount of competitive investment of the two

ndividuals. Each individual pays a cost that is an increasing func-

ion of the competitive investment. In contrast to the continuous

nowdrift game, in this game evolutionary branching cannot occur

egardless of the functional form of the benefit and cost functions

see Appendix A2 ). 

.2. Payoff function in competitive cooperation 

To investigate competitive cooperation, we combine the contin-

ous snowdrift game and the tug-of-war game by assuming that

ndividuals cooperatively produce rewards following the continu-

us snowdrift game, and that these rewards are then competitively

hared according to the tug-of-war game. Specifically, we assume

hat each individual has two of non-negative traits ( x, y ), where

 is the cooperation level and y is the competition level. We

ssumed the cooperatively produced reward is a power function of

he sum of the investments of two individuals. We also assumed

hat individuals with larger competitive investments get a larger

hare of the reward produced according to the ratio of exponen-

ial functions of the competitive investment (see Eq. (1) below).

ach individual pays the costs of cooperation and competition as

ower functions of its own cooperation and competition level.

ccordingly, when a focal individual ( x’, y’ ) interacts with an ( x,

 )-individual, the payoff of the focal individual is 

 

(
x ′ , y ′ | x, y 

)
= 

(
x ′ + x 

)p exp 

(
εy ′ 

)
exp ( εy ′ ) + exp ( εy ) 

− αx ′ q − βy ′ r (1)

The parameter ε ≥ 0 in Eq. (1) reflects the importance of com-

etitive investments, with ε = 0 corresponding to the case where

ompetitive investments are irrelevant. p, q and r are positive

arameters determining the curvature of the functions describing
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Fig. 1. The location of singular solutions and their convergence stability for rep- 

resentative sets of parameters. Solid and dotted curves show convergence stable 

and convergent unstable nullclines of the cooperation level x (grey) and competi- 

tion level y (black), i.e., the set of points satisfying Eqs. (2a) and (2b) equal to zero. 

White and black circles are non-convergence stable and convergence stable singular 

solutions. There are three evolutionary equilibrium points regardless of parameter 

values, (0, 0), ( x ∗ , 0) and ( x ∗ , y ∗), with x ∗ > 0 and y ∗> 0. For any sets of parameters, 

exactly one of these is convergence stable. 
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ooperative rewards, cooperative costs and competitive costs. The

unctional shapes become concave when p, q or r are less than

, and convex when these parameters are larger than 1. α and

determine the relative magnitude of the costs of cooperation

nd competition, respectively (0 < α and 0 < β). Note that we

ssume that the costs that an individual incurs are independent

f the partner’s investment levels. This assumption will be ade-

uate when individuals cannot change cooperative investments in

esponse to a partner’s investments, e.g. because the competitive

raits is not phenotypically plastic (e.g. body size). 

If the investment in competition is fixed at the same level

or all individuals in a population, Eq. (1) is mathematically

he same as the one resulting from the continuous snowdrift

ame ( Doebeli et al., 2004 , see Appendix A1 ). Similarly, if the

nvestment in cooperation is fixed at the same level for all indi-

iduals in a population, Eq. (1) is mathematically that same as the

ne resulting from the tug-of-war game ( Reeve et al., 1998 , see

ppendix A2 ). Hereafter we call these cases “cooperation-only”

nd “competition-only” cases, respectively. 

.3. Joint evolution of cooperation and competition in monomorphic 

opulations 

First, we focus on the evolutionary dynamics in monomorphic

opulations. The payoff of a rare mutant ( x’, y’ ) in a monomorphic

esident population in which all individuals have traits ( x, y ) is

iven by Eq. (1) . Using the framework of adaptive dynamics (for

 detailed discussion of this theory, as well as the underlying

ssumptions, see e.g. Dieckmann and Law, 1996 ; Geritz et al.,

998 ; Doebeli, 2011 ), the selection gradients for the two traits x

nd y are 

∂w 

∂x ′ 

∣∣∣∣
x ′ = x 
y ′ = y 

= 2 

p−2 p x p−1 − αq x q −1 (2a) 

nd 

∂w 

∂y ′ 

∣∣∣∣
x ′ = x 
y ′ = y 

= 2 

p−2 ε x p − βr y r−1 (2b) 

espectively. We assume that mutations occur separately and inde-

endently in the two traits x and y ; then the adaptive dynamics of

he two traits x and y is are proportional to the selection gradients

or each trait. In this case, the curves defined in the ( x, y )-plane

y setting the selection gradients to 0 are the “nullclines” of the

ooperation level and competition level, respectively ( Fig. 1 ). 

Eq. (2a) implies that the selection gradient for the cooperation

evel x is independent of the competition level y , i.e., competition

as no influence on the evolution of cooperation in monomorphic

opulations. As a consequence, the evolutionary dynamics in

onomorphic population can be investigated by first investigating

volutionary equilibrium states of the cooperation level, and then

nvestigating the evolution of competition by studying Eq. (2b) un-

er the assumption that the cooperation level is at an equilibrium.

The rate of evolutionary change in the cooperation level be-

omes 0 at the interior singular solution x ∗ obtained by setting

q. (2a) to 0: 

 

∗ = 

(
2 

p−2 p 

αq 

) 1 
q −p 

(3) 

Because p, q and α are positive, the singular solution (3) exists

s long as p � = q . When p = q , there is no interior singular solution,

nd the cooperation level either decrease to 0 (the lowest possible

alue by assumption) or increases without bound, depending on

he parameters p and α ( Appendix A3 ). However, in the biological

ontext it seems to be unrealistic that the exponents of cooperative
enefit and cooperative cost functions (i.e., p and q ) are exactly

he same. Therefore, in the following analysis we assume p � = q . 

The singular solution x ∗ is convergent stable when 

∂ 

∂x 

[ 

∂w 

∂x ′ 

∣∣∣∣
x ′ = x 
y ′ = y 

] 

x = x ∗
< 0 (4) 

It is easy to see ( Appendix A3 ) that p < q is the condition for

nequality (4) to be satisfied, and hence for convergence stability

f x ∗. As a consequence, when p < q , the cooperation level always

onverges to the singular value x ∗ regardless of the evolutionary

ynamics of the competition level y . When p > q , the cooperation

evel decreases to 0 over evolutionary time when the initial level

s below the singular value x ∗, and it increases without bound

unless a bound is imposed by assumption) if the initial level is

arger than the singular value x ∗. Hereafter, we represent this case

s x → ∞ , or just simply ∞ . 

Next, we consider the evolution of competition assuming that

he level of cooperation is x ∗, i.e., assuming p < q . The selec-

ion gradient of the competition level becomes 0 at the singular

olution y ∗ obtained by setting the selection gradient (2b) to 0: 

 

∗ = 

⎛ 

⎜ ⎝ 

2 

p−2 ε 
(

2 p−2 p 
αq 

) p 
q −p 

βr 

⎞ 

⎟ ⎠ 

1 
r−1 

(5) 

Because ε, r and β are positive, y ∗ always exist as long as

 � = 1. Again, there is no singular solution of competition level at

 = 1, but the realized evolutionary outcomes are easily categorized

 Appendix A3 ). In the following analysis, we focus on the case

 � = 1. 

y ∗ is convergence stable when 

∂ 

∂y 

[
∂w 

∂y ′ 

]
x = x ∗
y = y ∗

< 0 (6) 

nd it is easy to see ( Appendix A3 ) that r > 1 is the condition for

his inequality to be satisfied. It follows that ( x ∗, y ∗) with x ∗ given

y (3) and y ∗ given by (5) is a globally convergent stable solution

hen p < q and r > 1. When p < q and r < 1, y ∗ is not convergent
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stable, and depending on the initial state the competition level

goes 0 (when the initial trait value of y is < y ∗) or keep increasing

(when the initial trait value of y is > y ∗), i.e., the strategy of the

population converges to ( x ∗, 0) or ( x ∗, ∞ ). 

When p > q the cooperation level decreases to 0 or diverges

to infinity. In the former case, the selection gradient for the

competition level becomes negative for all y for small enough x

(see Eq. (2b) ), therefore such systems evolve to x = 0 and y = 0. In

the latter case, y also diverges to infinity (see Eq. (2b) ), i.e., x → ∞
and y → ∞ . Overall, monomorphic population thus evolve to the

following states (assuming that the initial trait values are not 0, x ∗

or y ∗, respectively): 

( x ∗, y ∗) when p < q and 1 < r , 

( x ∗, 0) or ( x ∗, ∞ ) when p < q and 1 > r , and 

(0, 0) or ( ∞ , ∞ ) when p > q 

( Fig. 1 ). 

In particular, except for cases in which one or both traits

diverge to infinity, the evolutionary dynamics converges to one of

the states ( x ∗, y ∗), ( x ∗, 0) or (0, 0). Despite being convergent stable,

these states may or may not be evolutionarily stable ( Geritz et al.,

1998 ). Evolutionary stability is determined by the Hessian matrix

of second derivatives of the invasion fitness function, Eq. (1) ,

evaluated at the convergent stable state (see Appendix A3 ). If this

Hessian matrix is negative definite, the convergence stable state

is also evolutionarily stable, and hence represents an endpoint of

the evolutionary dynamics. Conversely, if the Hessian has one or

two positive eigenvalues, the population can undergo evolutionary

diversification and become polymorphic. Considering first the

interior equilibrium ( x ∗, y ∗), whose convergence stability requires

p < q and 1 < r , the additional condition for the Hessian not to

be negative definite, and hence the conditions for evolutionary

branching is 

1 < r and 2 q − 1 − εp 

2 ( r − 1 ) 

⎛ 

⎜ ⎝ 

2 

p−2 ε 
(

2 p−2 p 
αq 

) p 
q −p 

βr 

⎞ 

⎟ ⎠ 

1 
r−1 

< p < q (7)

(see Appendix A3 ). 

If (7) is satisfied, the direction of evolutionary branching

is given by the eigenvector of the maximal eigenvalue of the

Hessian, which has non-zero values for both x and y elements

( Appendix A3 ). Thus, branching occurs in both the cooperation

level and the competition level. We note that (7) is a necessary

condition for the occurrence of evolutionary branching in the

cooperation-only model ( Appendix A3 ). Thus, while the singular

solution for the cooperative trait and its convergence stability

under competitive cooperation are mathematically identical to

the cooperation-only model ( Appendix A1 ), the condition for

evolutionary stability of the singular point in competitive coop-

eration is more severe than that in the cooperation-only model.

Consequently, evolutionary branching occurs for a wider range of

parameters with competitive cooperation. 

At the boundary equilibrium ( x ∗, 0), the selection gradient

in the y -direction is negative and evolutionary branching cannot

occur in the y -direction (negative y -values are not possible by

assumption). Therefore, evolutionary stability only needs to be

checked in the x -direction: ( x ∗, 0) is evolutionarily stable if the

fitness of a rare mutant ( x , 0) has a local maximum at x = x ∗. It

follows (see Appendix A2 ) that the conditions for ( x ∗, 0) to be

convergence stable and evolutionarily unstable are 

r < 1 and p < q < 1 (8)

If (8) is satisfied, evolutionary branching occurs in the level of

cooperation. It can be shown that after branching, the selection
radient for the competition level is always negative in both coex-

sting strains resulting from evolutionary branching ( Appendix A4 ).

s a consequence, the level of competition will remain at 0 in

he coexisting strains, and the evolutionary dynamics of cooper-

tion after branching becomes mathematically equivalent to that

ccurring in the continuous snowdrift game without competition

 Doebeli et al., 2004 ). Finally, when the evolutionary dynamics

onverges to (0, 0), both selection gradients in x and y continue to

e negative and evolutionary branching is not possible. 

.4. Numerical simulation of evolutionary dynamics after 

volutionary branching 

After evolutionary branching, the evolving population becomes

olymorphic and contains multiple strains each with a different set

f cooperation and competition levels. The evolutionary dynamics

an become rather complicated, and we have therefore used

umerical simulations for further investigations of these dynamics.

pecifically, we implemented simulations of the deterministic

ynamics of 2-dimensional trait distributions with mutations. In

hese simulations, we discretize phenotype space by first choosing

n upper boundary b for both phenotypes, and then dividing the

ermissible phenotype space into n 2 squares with side length

 = b / n for some integer n . For any given population, let f t ( i, j ) be

he frequency, at time t, of individuals in the population that have

 strategy in a square “bin” of phenotype space whose lower left

orner has coordinate ( i ∗d,j ∗d ), where i and j run from 0 to n − 1.

e assume that the dynamics of f t ( i, j ) is determined by the mean

er capita fitness in the corresponding bin of phenotype space: 

 t ( i, j ) = 

∑ 

k 

∑ 

l 

f t ( k, l ) w ( i d x , j d y | k d x , l d y ) (9)

here w is the payoff function (1) . Then f t ( i, j ) W t ( i, j ) is the total

umber of offspring of the individuals in the corresponding bin of

henotype space. 

We incorporate mutation by assuming that with probability

, offspring have a phenotype belonging to one of the phenotype

ins that are adjacent to the parent bin. Thus, the frequency of

he ( i, j )-bin in the next generation is: 

 t ( i, j ) = ( 1 − γ ) f t ( i, j ) W t ( i, j ) 

+ 

γ

4 

f t ( i + 1 , j ) W t ( i + 1 , j ) + 

γ

4 

f t ( i − 1 , j ) W t ( i − 1 , j ) 

+ 

γ

4 

f t ( i, j + 1 ) W t ( i, j + 1 ) + 

γ

4 

f t ( i, j − 1 ) W t ( i, j − 1 ) 

(10)

The first term on the r.h.s. of Eq. (10) is the number of offspring

f individuals in the ( i, j )-bin without mutation, and the other

erms represent offspring with mutations of individuals from

eighbouring bins. (The above expression is adjusted accordingly

or phenotypes on the boundary of trait space, i.e., when i or

 have values 0 or n − 1.) We can then simulate the replicator-

utator equation ( Hadeler, 1981 ; Bomze and Burger, 1995 ) for

he discretized trait distribution f t ( i, j ) by iterating the following

quation for small enough time steps δ: 

f t+1 ( i, j ) = f t ( i, j ) + δ
[
g t ( i, j ) − f t ( i, j ) W̄ t 

]
(11)

here W̄ t is the mean fitness in the population, i.e., 

¯
 t = 

∑ 

i 

∑ 

j 

g t ( i, j ) 

= 

∑ 

i 

∑ 

j 

f t ( i, j ) W t ( i, j ) (12)

By iterating (11) , we essentially solve a partial differential

quation describing the dynamics of the frequency distribution of
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Fig. 3. Comparison between the cooperation-only model and the full model with 

competitive cooperation with changing curvatures of the cooperative reward func- 

tion and the cooperative cost function. The bars at the top indicate the number of 

strains in the corresponding cooperation-only models (upper bar) and in the full 

model with competitive cooperation (lower bar), and the lower panel shows the 

mean cooperation level in cooperation-only models (solid grey line) and the mean 

cooperation level (solid black line) and the mean competition level (dotted black 

line) in competitive cooperation models. Grey shaded regions are parameters lead- 

ing to fluctuations in cooperation and competition levels due to repeated branch- 

ing and extinction (as shown in Fig. 2 c). The other parameters were ε = 1.0, r = 2.0, 

α = 0.1, β = 0.2. 

F

e

l

a

n evolving population. For purposes of comparison, we used an

nalogous procedure to simulate the evolutionary dynamics in the

ooperation-only model. 

. Results 

.1. Evolutionary outcomes 

We used numerical simulations of the dynamics of frequency

istributions to investigate scenarios of evolutionary diversifi-

ation, i.e., scenarios in which the analytical results predicted

volutionary branching. Fig. 2 shows typical examples of the

esults of the numerical simulations. In Fig. 2 a, evolutionary

iversification results in two coexisting strains, one with high

ooperative and competitive investments, and the other with

ow investments in both cooperation and competition. In Fig. 2 b,

ultiple evolutionary branching occurs, and a polymorphism with

ore than two coexisting strains emerges from the evolutionary

ynamics. Fig. 2 c shows another salient case, in which the evolving

opulation undergoes repeated bouts of diversification followed

y extinction of one of the emerging phenotypic branches. As

 consequence, the mean levels of cooperation and competition

uctuate over evolutionary time. 

From our extensive simulations, we found that the curvature of

he cooperative reward and cost functions have a strong influence

n evolutionary outcomes ( Figs. 3 and 4 ). When both reward and
ig. 2. Evolutionary dynamics of the cooperation level (left panels) and the competition level (centre panels); the right panels show the distributions of strategies at the 

nd of the simulations, representing an evolutionary stable state (darker areas represent higher frequencies). The top row (a) shows an example of evolutionary branching 

eading of coexistence of two strains. The middle row (b) shows an example with secondary branching, leading to the coexistence of four strains. The bottom row (c) shows 

n evolutionary pattern of repeated branching and extinction. Other parameters are ε = 1, r = 2, α = 0.1, β = 0.2, k = 1. 
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Fig. 4. Evolutionary outcomes depending on the curvature of the cooperative reward function ( p : horizontal axis) and the curvature of the cooperative cost function ( q : 

vertical axis). Panels (a) and (b) show the number of strains in the corresponding cooperation-only model and in the full model for competitive cooperation, respectively, 

at the evolutionary stable state (white: no branching, light grey: dimorphic, dark grey: trimorphic, black: tetra-morphic). In the hatched region, repeated evolutionary 

branching and extinction occurs. Panel (c) shows the category of social interaction emerging in polymorphic populations as determined by the rows of pairwise payoff

matrices (see main text for explanation): light-grey: snowdrift game, dark grey: battle-of-the-sexes game, black: hawk-dove game. For panels (b) and (c), we ran simulations 

for 14,641 parameter combinations; in 134 the simulations were extremely slow and finished before the evolutionary dynamics reached a stable state. For those parameter 

combinations, we substituted the majority result for neighbouring parameter combinations for drawing the figures. The other parameters ware ε = 1.0, r = 2.0, α = 0.1, β = 0.2. 

Fig. 5. (a) The number of strains at the evolutionarily stable state and (b) the category of social interaction for different magnitude of the cost of cooperation ( α: horizontal 

axis) and competition ( β: vertical axis). In panel (a), white: no branching, light grey: dimorphic, dark grey: trimorphic, black: tetra-morphic, hatched: repeated evolutionary 

branching and extinction. In panel (b), light-grey: snowdrift game, dark grey: battle-of-the-sexes game, black: hawk-dove game. For panel (a) and (b), we ran simulations for 

1600 parameter combinations. In 9 cases the simulations terminated before the evolutionary dynamics reached a stable. For those parameter combinations, we substituted 

the majority result for neighbouring parameter combinations for drawing the figures. The other parameters ware ε = 1.0, p = 0.25, q = 0.5, r = 2.0. 
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cost functions are concave (log 2 p < 0 and log 2 q < 0) multiple

evolutionary branching into trimorphic or tetramorphic popula-

tions can occur (grey or dark region in Fig. 4 b). We note that the

parameter region where evolutionary branching occurs (non-white

regions) is wider in competitive cooperation ( Fig. 4 b) than that in

the corresponding cooperation-only cases ( Fig. 4 a), as predicted by

our analytical arguments. Also, trimorphic or tetramorphic popula-

tions did not emerge (dark grey and black regions) in simulations

of cooperation-only scenarios ( Fig. 4 a). When the reward function

is concave and the cost function is convex (log 2 p < 0 < log 2 q ),

branching rarely occurs and the population stays monomorphic.

When both reward and cost functions are convex (0 < log 2 p

and 0 < log 2 q ), the dynamics tend to show repeated branching

and extinction. Occurrence of the repeated branching-extinction

scenarios is also promoted when the curvatures of the reward and

cost functions are similar ( p ∼= 

q in Fig. 4 b). 

The magnitude of the cost of cooperation and competition,

described by the parameters α and β , also affects the evolutionary

outcomes ( Fig. 5 a). For example, the number of coexisting strains

increases when either α or β is small (dark grey and black regions

in Fig. 5 a), but very small costs lead to repeated branching and

extinction (hatched region in Fig. 5 a). The parameter regions

where repeated branching and extinction occurs becomes wider
hen the influence of investments in competition ε is large (not

hown on Figures). 

Overall, the numerical simulations revealed two interesting and

obust patterns in the evolutionary dynamics after branching. First,

n polymorphic populations, the mean cooperation level is always

ositively correlated with the mean competition level. Thus, more

ooperative strains tend to be more competitive (right panels of

ig. 2 a and b). Second, in polymorphic populations, the average

evel of cooperation evolving in competitive cooperation models is

lways higher than in polymorphic cooperation-only populations

grey and black solid lines in Fig. 3 ). Thus, the presence of compe-

ition for rewards generated by cooperation tends to increase the

verage cooperation level in polymorphic populations. 

.2. Categorization of social interactions in polymorphic populations 

Since coexisting strains both cooperate and compete with each

ther, it is interesting to investigate the nature of the social inter-

ctions occurring in polymorphic populations. In such populations,

 payoff matrix can be defined by calculating the mean payoff

rom interactions in each pair of coexisting strains. When focusing

n any pair of strains, we call the strain with the higher level of

ooperation the “cooperator”, and the other one the “cheater”, and
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e denote by R the payoff for a cooperator playing another coop-

rator, and by S the payoff for a cooperator playing a cheater. The

ayoff for a cheater playing another cooperator and for a cheater

laying another cheater are denoted by T and P , respectively. We

ote that because of the positive correlation between cooperation

nd competition, in any given pair cooperators always have a

igher competition level than the cheater in that pair. 

We categorize the relationship of each pair of strains based on

he relative magnitude of the elements of the respective payoff

atrix. Comparing elements within columns reveals whether or

ot the strains in a given pair can coexist. Recall that there may be

ore than two strains coexisting in polymorphic populations, so

hat coexistence of pairs of strains is not automatically guaranteed.

n the matrix element notation introduced above, coexistence re-

uires T > R and S > P , in which case the corresponding 2-player

ame has a stable interior equilibrium. 

The relative magnitude of the row elements indicates the pre-

erred type of interaction partner for a given strain. For example,

f R > S then cooperators get a higher payoff when playing against

nother co-operator than when playing against a cheater. If in ad-

ition we have T > P , both strains in a coexisting pair prefer to

lay the cooperator, a situation which we refer to as a “snow-

rift game”. In contrast, when R < S and T < P , both strains get a

igher payoff when playing the cheater strain. Because the cheater

train (i.e., the strain with lower cooperation) is always the weaker

ompetitor in the pair, we refer to this situation as a “hawk-dove

ame”, because both strains in the pair prefer to play against the

eaker competitor, reminiscent of the classic hawk-dove game.

he other two possible cases occur when each strain gets a higher

ayoff when playing against the other strain, or when each strain

ets a higher payoff when playing against itself. In accordance

ith classical terminology ( Farrell, 1987 ) we call the former case

 “battle-of-the-sexes game” and the latter a “coordination game”. 

By applying the above classification scheme to many pairs of

trains from polymorphic evolved populations, we found that the

ajority of the resulting payoff matrices had column structured

hat allowed coexistence. In other words, the great majority of

airs of strains were able to coexist, even if they came from

olymorphic populations with more than two coexisting strains.

n particular, this implies that rock-paper-scissors coexistence was

are in polymorphic populations. However, the row structure of

he resulting payoff matrices showed different types of social

nteractions depending on the parameter values. When the con-

aveness of the benefit function is large, the row elements most

ften reflected a snowdrift game (light grey region in Fig. 4 c), but

hen the concavity becomes less pronounced, the social relation-

hip shifts to a battle-of-the-sexes or a hawk-dove game (dark

rey and black regions in Fig. 4 c). Similarly, when the costs of both

ooperation and competition are large enough, the row structures

eflect a snowdrift game, but if either cost becomes small enough,

he social interaction tends to shift to a battle-of-the-sexes or a

awk-dove game ( Fig. 5 b). 

Interestingly, the type of game seems to change with the num-

er of strains in the population: in the parameter regions where

opulation are dimorphic, the social relationship tends to be a

nowdrift game (light grey regions in Fig. 4 b (or 5 a) mostly overlap

ith light grey regions in Fig. 4 c (or 5 b)), but battle-of-the-sexes

r hawk-dove games tend to occur when polymorphic population

ontain more than two distinct phenotypic strains (dark grey and

lack regions in Fig. 4 b (or 5 a) mostly overlap with dark grey and

lack regions in Fig. 4 c (or 5 b)). 

. Discussion 

Although in nature cooperative interactions often occur in the

ontext of competition for cooperatively produced rewards, most
ften cooperation and competition have been studied separately

sing different theoretical frameworks. Consequently, how co-

peration and competition influence each other’s evolution is a

argely open question. In this study, we combined cooperation and

ompetition as continuous traits in a model based on evolutionary

ame theory, and we showed that evolution of competitive cooper-

tion can be qualitatively different from the evolutionary dynamics

een in cooperation-only or competition-only models. Therefore,

onsidering the joint evolution of cooperation and competition

ay be important for understanding social interactions. 

One of the findings that is qualitatively different from

ooperation-only or competition-only scenarios is the fact that

volutionary branching is promoted in competitive cooperation

n the sense that it occurs for a wider range of parameters than

n the corresponding single-trait models. This result has two

spects. First, competition promotes evolutionary branching in

he cooperative trait compared to cooperation-only models, and

he number of strains coexisting after evolutionary diversifica-

ion tends to be larger. Second, evolutionary branching in the

ooperative trait generates branching in the competitive trait,

hereas evolutionary branching does not occur at all in the

orresponding competition-only models (i.e., competition on its

wn cannot drive evolutionary branching in these models). It is

nown that evolutionary branching can occur more easily when

he dimension of trait space is higher ( Doebeli and Ispolatov, 2010 ;

ébarre et al. 2014 ; Svardal et al., 2014 ). By considering compet-

tive cooperation, we increased the dimension of trait space form

he corresponding single-trait models. This increase in dimension

llows for conditions under which mutants that vary in both traits

rom the current resident can invade an evolutionarily unstable

esident, whereas mutants that vary in only one trait dimension

rom the resident cannot. Consequently, the co-occurrence of co-

peration and competition relaxes the conditions for evolutionary

ranching. This result can be also explained from the viewpoint

f social niche construction theory ( Power et al. 2011 ; Akçay and

leve, 2012 ; Ryan et al., 2016 ; Saltz et al., 2016 ): the existence

f competition constructed a new “social niche” for coopera-

ion, which causes the promotion of the evolutionary branching

n cooperative traits. Note that in our model the social niche

onstruction is bidirectional between cooperation and competi-

ion, i.e., we can also interpret the promotion of the evolutionary

ranching in competitive traits as due to a social niche constructed

y the evolution of the cooperation. 

Another robust result of our analysis is that in polymorphic

opulations, more cooperative strains are always more competitive

han less cooperative strains. In other words, the levels of cooper-

tion and competition are positively correlated among coexisting

trains. This can be explained by variation in the importance

f competition depending on the level of cooperation. Because

ore cooperative individuals produce more shared rewards, the

xpected benefit from an additional investment in competition

ncreases with the cooperation level. In other words, contribution

o the public good increases the incentive for investment in

ompetition. 

Although few empirical studies have directly investigated

he relationship between levels of cooperation and competition,

ome studies have reported data supporting the prediction of a

orrelation between cooperative and competitive effort among

ndividuals. For example, social hover wasps cooperatively de-

end their nest against attacks from other nests, and it has been

hown that higher-rank individuals within the nest defend more

requently than lower-rank ones ( Cronin and Field, 2007 ). Because

igher rank is associated with higher reproductive success, the

ank can be regarded as the competition level. Thus, the cor-

elation between frequency of defence and rank is viewed as a

orrelation between the levels of cooperation and competition
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within the nest. A similar scenario has been reported in blue mon-

keys, who cooperatively defend their territory for resources, and

where higher-ranked individuals, who enjoy preferential access to

food, exhibit the defensive behaviour more often than lower-rank

ones ( Cords, 2007 ). These examples seem to support our results,

but the behaviours of social animals are generally influenced by

various factors. For example, the difference of defensive behaviour

depending on the social rank might also be explained by the

“silver spoon” effect, see Monaghan (2008) . Additional empirical

studies focusing on both cooperative and competitive traits would

be required for teasing apart such alternative explanations. 

A third robust result of our analysis is that the existence of

the competition increases the average cooperation level within

polymorphic populations. This is a somewhat counterintuitive out-

come, because within-group competition is often thought to be a

factor that prevents the maintenance of cooperation ( Aureli et al.,

2002 ; Barker et al., 2012 ). The fact that competition promotes

cooperation in our models can be explained as follows. In the

absence of the competition, the division of shared rewards is

equal. Therefore, free-riders can exploit cooperators, thus prevent-

ing the maintenance of high average levels of cooperation. With

competitive cooperation, however, good competitors can directly

increase their payoff by additional investments in cooperation,

because being a good competitor ensures a more than proportional

return from an investment in cooperation. Thus, unequal division

of rewards promotes cooperation. 

A final robust result of our analysis is that with competitive

cooperation, evolutionary branching is often followed by extinction

of some of the coexisting strains, which in turn is followed again

by evolutionary diversification. In such scenarios, the level of

diversity fluctuates over evolutional time. Such repeated branching

and extinction tend to occur when the investment in competition

has a relatively large influence on payoffs (i.e., the competition

parameter ε is large), and the costs of cooperation and/or com-

petition are small. In such scenarios, small differences in the level

of competition have a large effect, leading to an “arms race”-like

( Abrams, 1986 ) escalation of the competition level that can lead

to extinction. Our results suggest that factors that make it difficult

to attain high levels of competition promote the maintenance of

stable polymorphisms. 

The form of the function determining how rewards are divided

could also be a factor causing an arms race-like escalation. We

assumed that the ratio of the exponential functions of the compet-

itive investment determines the reward division, where the differ-

ence between two individuals’ competitive investments determines

the division ratio. In such a case, additional investment in com-

petition always generates the same degree of advantage in reward

division, regardless of the mean level of competition, and so the

escalation of competition level can easily occur. Another functional

form for the division of rewards is the ratio of power functions

of the competitive investment ( Cant, 2012 ). In this form, the

advantage from the additional investment in competition becomes

smaller when the competition level is higher, which might prevent

escalation of the competition level, and hence the occurrence

of repeated branching and extinction. We note that these two

functional forms can be obtained from each other through a trans-

formation of variables, although such a transformation would also

change the form of the competitive cost function ( Appendix B ).

This means that the difference between the two forms of the

division of reward is mathematically equivalent to a difference

between competitive cost functions. Therefore, when we consider

all possible cost functions, the set of all evolutionarily outcomes

are the same for either functional form of the division of rewards. 

The problem of cheating is ubiquitous in the context of co-

operation. With competitive cooperation, there is a twist to this

problem: cooperators can “exploit” cheaters by enforcing unequal
ivision of public goods through superior competitive ability. Inter-

stingly, the interaction with competitive cooperators can still be

eneficial for cheaters. For example, in polymorphic populations

n which the social interaction are described by the battle-of-

he-sexes game, more cooperative (and hence more competitive)

ndividuals exploit less cooperative individuals by unequal division

f rewards, but even the less cooperative individuals get larger

ayoffs by playing with more cooperative individuals (i.e., by

laying the exploitative strategy) than from playing themselves,

ecause in such a scenario, a smaller share of a larger reward

s better than larger share of a smaller reward. In other words,

or each strain the interaction with the other strains is benefi-

ial. Scenarios in which cooperators effectively exploit cheaters

re not possible in models with cooperation-only, and hence a

haracteristic feature of competitive cooperation. Interestingly,

hen polymorphisms result in social interactions of the battle-of-

he-sexes type, the polymorphic populations often contain more

han two coexisting phenotypic strains ( Figs. 4 and 5 ), resulting

n social hierarchies with multiple ranks. Numerous empirical

tudies have reported the existence of social hierarchies in a

ange of different organism ( Majolo et al., 2012 ; Bush et al., 2016 ;

evost et al., 2016 ), and competitive cooperation could be one of

he mechanisms causing the evolution of such social structures. 

Competitive cooperation can occur when the cooperatively

roduced public good is divisible, but not all cooperation leads

o the production of such public goods. For example, when co-

peration involves alarm calls or group vigilance, the reward of

ooperation is information about imminent predator attack, which

s not divisible. Similarly, voluntary vaccination in human society

s a kind of cooperation for preventing the outbreak of disease

 Boone, 2014 ). In this cooperation the reward is the reduction

f the probability of outbreak, which is not divisible. In general,

volutionary outcomes may depend on whether cooperatively pro-

uced public goods are divisible or not. In particular, cooperative

olymorphisms might be more common when the public good

roduced allows for unequal division. 

Social interactions are often multifaceted and comprise various

rocesses. The simultaneous consideration of the evolution of

ultiple aspects of social interactions increases the dimension of

rait space in which evolution unfolds. This can generate novel

volutionary outcomes that are not predicted when the focus is

n a single social trait ( Brown and Taylor, 2010 ; Mullon et al.,

016 ). Some previous studies also indicated the importance of

onsidering multiple social components ( Brown and Taylor, 2010 ;

ueffler et al., 2012 ; Mullon et al., 2016 ; Kuijper and Johnstone,

017 ), but overall, it seems that knowledge about the influence

f the joint evolution of various social traits is still insufficient.

ur study revealed that the joint evolution of two major social

omponents, cooperation and competition, can generate novel

volutionary outcomes and predictions. 
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ppendix A. Evolutionary dynamics in monomorphic 

opulation 

1. Evolution of cooperation in the cooperation-only model 

Here we consider the case that the competition level y is

xed, i.e., the cooperation-only model. Then the payoff function

q. (1) becomes 

 

(
x ′ , x 

)
= 

1 

(
x ′ + x 

)p − αx ′ q − ˆ D (A1)

2 

http://dx.doi.org/10.13039/501100001691
http://dx.doi.org/10.13039/501100000038
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here ˆ D is a constant. Using the framework of adaptive dynamics

 Dieckmann and Law, 1996 ; Geritz et al., 1998 ; Doebeli, 2011 ), the

election gradient for the cooperation level x is 

∂w 

∂x ′ 

∣∣∣∣
x ′ = x 

= 2 

p−2 p x p−1 − αq x q −1 (A2) 

The interior singular solution x ∗ > 0 at which the right hand

ide of (A2) becomes 0 is 

 

∗ = 

(
2 

p−2 p 

αq 

) 1 
q −p 

(A3) 

Because p, q and α are positive, there is always one positive

ingular solution as long as p � = q . When p = q , there is no inte-

ior singular solution; then the selection gradient for x given by

q. (A2) becomes 

p x p−1 
(
2 

p−2 − α
)

(A4) 

In this case, the sign of the selection gradient is the sign of

 

p−2 − α regardless of the cooperation level x . When 2 p−2 < α, the

election gradient is always negative, and the cooperation level de-

rease to 0 (we always assume x ≥ 0). Otherwise, the selection gra-

ient is always positive, and the cooperation level keeps increasing.

hen 2 p−2 = α, selection is neutral at any x . 

The interior singular solution x ∗ is convergent stable (CS) when

∂ 

∂x 

[
∂w 

∂x ′ 

∣∣∣∣
x ′ = x 

]
x = x ∗

< 0 (A5) 

Evaluating this condition yields 

p ( p − 1 ) ( 2 x ∗) p−2 
< αq ( q − 1 ) x ∗q −2 (A6) 

nd substituting Eq. (A3) for x ∗, the condition that x ∗ is CS be-

omes 

p < q (A7) 

Consequently, when p < q , the cooperation level converge to

 

∗ regardless of the initial trait value. On the other hand, when p

 q , the dynamics of the cooperation level depends on the initial

tate: if evolution starts at x < x ∗, the trait value x decreases to

, otherwise the trait keeps to increasing to ever higher levels, i.e.,

 → ∞ . 

After convergence to the singular solution x ∗, the condition for

volutionary stability (ES) is 

∂ 2 w 

∂ x ′ 2 

∣∣∣∣
x ′ = x = x ∗

< 0 (A8) 

Evaluating this expression yields 

1 

2 

p ( p − 1 ) ( 2 x ∗) p−2 
< αq ( q − 1 ) x ∗q −2 (A9) 

nd substituting Eq. (A3) for x ∗ gives the condition that x ∗ is ES as

p < 2 q − 1 (A10)

Evolutionary branching occurs when the singular solution is CS

ut not ES, i.e., when 

 q − 1 < p < q (A11)

It is clear that 2 q − 1 < q is satisfied only when q < 1. Thus,

volutionary branching can only occur when p < 1 and q < 1,

.e., when both the benefit and the cost functions are concave. Be-

ause evolutionary branching occurs only when both mutants with

arger and smaller trait value than the singular solution can invade

nto the resident population, evolutionary branching does not oc-

ur when x = 0 and x → ∞ . 
2. Evolution of competition in the competition-only model 

Next, we consider the case where the cooperation level x is

xed, i.e., the competition-only model. The payoff function is 

 

(
y ′ | y ) = 

ˆ B 

exp 

(
εy ′ 

)
exp ( εy ′ ) + exp ( εy ) 

− ˆ C − βy 
′ r (A12) 

here ˆ B and 

ˆ C are constants. Again, by following the adaptive dy-

amics theory, the selection gradient of the competition level y is

∂w 

∂y ′ 

∣∣∣∣
y ′ = y 

= 

ε ̂  B 

4 

− βr y r−1 (A13) 

The interior singular solution y ∗ is obtained by setting the right

and side of (A0) to 0: 

 

∗ = 

(
ε ̂  B 

4 βr 

) 1 
r−1 

(A14) 

Because β , r and γ are positive, there is always one positive

ingular solution as long as r � = 1. When r = 1, the selection gradi-

nt ε ̂  B /4 – β becomes a constant and there is no interior singular

olution. Then, the competition level decrease to 0 if ε ̂  B /4 < β ,

r increase without bound if ε ̂  B /4 > β (selection is neutral when

 ̂

 B /4 = β) . 

Evaluating the expressions (A5) and (A8) with replacing x’ and

 by y’ and y yields the conditions for convergence stable and for

volutionary stable at the interior singular solution y ∗, respectively.

oth of them become same expression: 

βr ( r − 1 ) y ∗r−2 < 0 (A15) 

Because β , r and y ∗ are positive, (A15) becomes 

 < r (A16) 

Because the convergence stable singular points are always evo-

utionarily stable, evolutionary branching (which requires CS and

ot ES) cannot occur in this model. 

3. Coevolution of cooperation and competition 

In the monomorphic population, the selection gradient of coop-

ration level in full model Eq. (2a) is equal formula with that in

ooperation-only model Eq. (A2) . This means that the equilibrium

ooperation level x ∗ and its convergent stability is same with the

ooperation-only model, i.e., when p � = q the interior singular so-

ution x ∗ shown in Eq. (3) exists and it is convergent stable when

 < q (see (A5) , (A6) and (A7) for the derivation). When p = q , the

ign of which is determined by 2 p−2 − α (see Eq. (A4) ), i.e., coop-

ration level decrease to 0 when 2 p−2 < α, otherwise the cooper-

tion level keeps increasing without bound (selection is neutral at

ny x When 2 p−2 = α). 

When the level of cooperation x is x ∗, the singular solution y ∗

erived as Eq. (5) is convergent stable when 

βr ( r − 1 ) y ∗r−2 < 0 (A17) 

hich is yielded by evaluating Eq. (6) . Because β , r and y ∗ are

ositive, this condition is satisfied when r > 1. When r � = 1, the

opulation converge to some certain state as we described in the

ain text. When r = 1, the selection gradient for competition level

q. (2b) becomes 

 

p−2 ε 

(
2 

p−2 p 

αq 

) p 
q −p 

− β (A18) 

Eq. (A18) is constant. Therefore, the competition level decrease

o 0 when Eq. (A18) is negative, otherwise the competition level

eeps increasing without bound (i.e., y → ∞ ). When Eq. (A18) is



10 K. Ito and M. Doebeli / Journal of Theoretical Biology 480 (2019) 1–12 

 

 

 

 

 

 

1 
p 

 

(
2 

β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

1

 

 

d  

t  

(  

w  

T  

c  

c  

f  

p

 

t  

x

H  

w  

n  

t  

l  

p

 

 

 

s  

E

A

 

p  

t  

i  

t  

p  

c  

w  
equal to zero, selection is neutral at any y . When x = 0 and x = ∞ ,

the population finally reach to (0, 0) and ( ∞ , ∞ ), respectively (see

the main text). 

Overall, monomorphic population reach to the following state: 

( x ∗, y ∗) when p < q and r > 1 

( x ∗, 0) or ( x ∗, ∞ ) when p < q and r < 1 

( x ∗, 0) when p < q and r = 1 and 2 p−2 ε ( 2 
p−2 p 
αq ) 

p 
q −p < β

( x ∗, ∞ ) when p < q and r = 1 and 2 p−2 ε ( 2 
p−2 p 
αq ) 

p 
q −p > β

( x ∗, ∀ y ) when p < q and r = 1 and 2 p−2 ε ( 2 
p−2 p 
αq ) 

p 
q −p = β

(0, 0) or ( ∞ , ∞ ) when p > q 

(0, 0) when p = q and 2 p−2 < α
( ∞ , ∞ ) when p = q and 2 p−2 > α
( ∀ x , ∀ y ) when p = q and 2 p−2 = α

where ∀ x or ∀ y means selection is neutral at any x or y. By ignor-

ing the cases r = 1 or p = q , the state becomes into three cases in

the main text ( Fig. 1 ). 

After the resident reach to the singular point ( x ∗, y ∗), ( x ∗, y ∗) is

evolutionarily stable if all eigenvalues of the Hessian matrix H are

negative at the singular point, where 

H = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∂ 2 W 

∂ x ′ 2 

∣∣∣∣
x = x ′ = x ∗
y = y ′ = y ∗

∂ 2 W 

∂ x ′ ∂ y ′ 

∣∣∣∣
x = x ′ = x ∗
y = y ′ = y ∗

∂ 2 W 

∂ x ′ ∂ y ′ 

∣∣∣∣
x = x ′ = x ∗
y = y ′ = y ∗

∂ 2 W 

∂ y ′ 2 

∣∣∣∣
x = x ′ = x ∗
y = y ′ = y ∗

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

2 

p−3 p 

(
2 

p−2 p 

αq 

) p−2 
q −p 

{ p − 1 − 2 ( q − 1 ) } 2 

p−3 εp 

(
2 

p−2 p 

αq 

) p−
q −

2 

p−3 εp 

(
2 

p−2 p 

αq 

) p−1 
q −p 

−βr ( r − 1 ) 

⎛ 

⎜ ⎜ ⎜ ⎝ 

2 

p−2 ε

According to the Routh–Hurwitz stability criterion, all eigenval-

ues of a two dimensional matrix M is negative when det(M) > 0

and tr(M) < 0, where det and tr mean the determinant and the

trace, respectively. The former and the latter conditions of the Hes-

sian matrix H are 

2 q − 1 − p > 

εp 

2 ( r − 1 ) 

⎛ 

⎜ ⎝ 

2 

p−2 ε 
(

2 p−2 p 
αq 

) p 
q −p 

βr 

⎞ 

⎟ ⎠ 

1 
r−1 

(A20a)

and 

2 q − 1 − p > −2 ε ( r − 1 ) 

p 

(
2 

p−2 p 

αq 

) 2 
q −p 

⎛ 

⎜ ⎝ 

2 

p−2 ε 
(

2 p−2 p 
αq 

) p 
q −p 

βr 

⎞ 

⎟ ⎠ 

−1 
r−1 

(A20b)

Because now we focus on the convergent stable solution at ( x ∗,

y ∗), p < q and r > 1. Then, the right-hand sides of (A20a) and

(A20b) are always positive and negative, respectively; i.e., (A20a) is

a sufficient condition for (A20b) . Consequently, Eq. (A20a) is the

additional condition for a CS singular solution is evolutionarily sta-

ble. We conclude from the convergence stability of ( x ∗, y ∗) (i.e.,

p < q and r > 1) and Eq. (A20a) that evolutionary branching occurs
p−2 p 

αq 

) p 
q −p 

r 

⎞ 

⎟ ⎟ ⎟ ⎠ 

r−2 
r−1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(A19)

t ( x ∗, y ∗) when 

 < r and 2 q − 1 − εp 

2 ( r − 1 ) 

⎛ 

⎜ ⎝ 

2 

p−2 ε 
(

2 p−2 p 
αq 

) p 
q −p 

βr 

⎞ 

⎟ ⎠ 

1 
r−1 

< p < q 

(A21)

When the third term of the left-hand side in the second con-

ition of (A21) is zero, this condition becomes equal to the condi-

ion for the evolutionary branching in the cooperation-only model

A11) . Although this term depends on the parameter p , it is al-

ays positive as long as the first condition of (A21) is satisfied.

his implies that the condition for evolutionary branching in the

ompetitive cooperation model is less restrictive than that in the

ooperation-only model, hence evolutionary branching can occur

or a larger region of parameter space when cooperation and com-

etition coevolve. 

Evolutionary branching occurs in the direction of the eigenvec-

or of the largest eigenvalue of the Hessian matrix H , i.e., the vector

 satisfying 

x = λx (A22)

here λ is the maximum eigenvalue of H . Because both nondiago-

al elements of H are non-zero, both coordinates of the eigenvec-

or of the maximal eigenvalue are non-zero. This means that evo-

utionary branching occurs in both the cooperation and the com-

etition level. 

The singular point ( x ∗,0) is evolutionarily stable if 

1 

2 

p ( p − 1 ) ( 2 x ∗) p−2 − αq ( q − 1 ) x ∗q −2 < 0 (A23)

By solving this, 

p < 2 q − 1 (A24)

This condition is the same as the condition for evolutionary

tability of the singular solution in cooperation-only model (see

q. (A10) ). 

4. Evolutionary dynamics after evolutionary branching when r < 1 

After a monomorphic population converges to the singular

oint ( x ∗, 0) (i.e., p < q and r < 1), evolutionary branching in

he cooperation level occurs if p < 2 q – 1. Even after the branch-

ng, investment in competition is never selected, i.e., the compe-

ition level y will remain at 0 for all individuals within polymor-

hic populations. To see this, consider a population containing m

oexisting strains with different cooperation levels x 1 , x 2 …x m 

but

hose competition levels are δ (i.e., y = y = … = y m 

= δ), which is
1 2 
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 lowest evolutionarily reachable competition level. Assuming the

ractions of these strains within the population are f 1 , f 2 …f m 

(i.e.,

 1 + f 2 + … + f m 

= 1), the fitness of a rare mutant ( x’, y’ ) appearing

n such a population is 

 

(
x ′ , y ′ | x 1 ... m 

, f 1 ... m 

)
= 

{ 

m ∑ 

i =1 

(
x ′ + x i 

)p 

} 

exp 

(
εy ′ 

)
exp ( εy ′ ) + exp ( εδ) 

− αx ′ q − βy ′ r (A25) 

nd hence the selection gradient for the competitive trait of k th

train is 

∂W 

∂y ′ 

∣∣∣∣x ′ = x k 
y ′ = δ

= 

ε 

4 

m ∑ 

i =1 

( x k + x i ) 
p − βr δr−1 (A26) 

Because now we assume y ≥ 0, δ = 0. When we take the limit of

to 0, the second term of the right-hand side of Eq. (A26) becomes

xtremely large because r < 1. It follows that the selection gradient

or the competition level is always negative around y = 0, hence the

ompetition level cannot evolve away from 0 when r < 1. 

ppendix B. Functional form of the division of rewards 

In our model, we assumed that the division of rewards is de-

ermined by the ratio of exponential functions of the competitive

nvestment. However, we can also consider other functional forms

or reward division. One general form is the ratio of power func-

ions of the competitive investment ( Cant, 2012 ). When the divi-

ion of reward is determined by this functional form, the fitness

unction (1) in the main text becomes 

 

(
x ′ , y ′ | x, y 

)
= 

(
x ′ + x 

)p y 
′ d 

y ′ d + y d 
− αx 

′ q − βy ′ r (B1) 

here d is a coefficient determining the effect of the competitive

nvestments the reward division. 

Defining a new variable Y by 

 = 

d 

ε 
log ( y ) 

nd noting that exp ( εY ) = y d , the fitness function (B1) can be

ewritten as 

 

(
x ′ , Y ′ | x, Y 

)
= 

(
x ′ + x 

)p exp 

(
εY ′ 

)
exp ( εY ′ ) + exp ( εY ) 

− αx 
′ q − β exp 

(
εr 

d 
Y ′ 

)
(B2) 

This is equal to the fitness function of our model Eq. (1) , ex-

ept for the functional form of the cost of competitive investments,

hich becomes an exponential function. It follows that the set of

ll possible evolutionary outcomes is the same for the different

unctional forms of the division of rewards, up to a transformation

f the function determining the costs of competitive investments. 
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