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WELLNESS SYMPOSIUM
Monday March 6th

Hosted by The Botany and Zoology Wellness Initiative

BIODIVERSITY RESEARCH CENTRE

BREAKFAST & BOARD GAMES - Atrium on 1st floor
UBC YOGA" - BRC 224

WELLNESS TALK - BRC 224
"In helping others, do we help ourselves?"

by Julia Nakamura & Yeeun Lee, Department of Psychology
PAINT-A-POTTED-PLANT" - BRC 225

MINDFULNESS WORKSHOP - BRC 224
by Sangeeta

% *Registration required
% All events are free!

wellness@biodiversity.ubc.ca

REGISTER:

Register here-free!

March 6t

8:30am- 1pm
Biodiversity Research
Centre

Free and open to
everyone. Ok to pop
in and out during the
day.



Outline for today
GLMs

What is a generalized linear model
Advantages and assumptions of GLMs
Linear predictors and link functions
 Example: fit a constant (the proportion)
Analysis of deviance table
* Example: fit dose-response data using logistic regression
* Example: fit count data using a log-linear model
Modeling overdispersion (excessive variance)
 Example: Modeling contingency tables



Review linear model



Review: fitting a linear model in R

* Y=mx+b
* Y is response variable
* X is explanatory variable

* Errors normally distributed with equal variance at
all values of the X variables

e Uses least squares to fit model to data and to
estimate parameters

* R code: uses Im() for fixed effects only or Ime() if
mixed-effects linear model



Review: fitting a linear model in R

* Can x predict y with a linear equation?
* Linear regression—predictive with numeric x
e z<-Im(y ~ x)
* Scatter plot with a line

* Does y differ among x categories?
* Single factor ANOVA —not predictive , categorical X
e z<-Im(y ™~ x)
* Box-plot

Predicted Y-values are modelled directly in a linear model (same units,
same scale)



What is a GLM and why use
it?



Why use GLMs

With linear modelling (Im or Ime), central
assumption is that variance is constant (flat line),
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But in many practical applications, variance is not constant, so
this assumption is invalid
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Variance
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...with count data (often zero-inflated)

Variance often increases
linearly with the mean
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But...with proportion data (e.g. success vs failure),

variance can be an inverted U-shaped
function of the mean (bottom left).
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GLMs are an extension of regular
linear modelling

* GLMs extend the linear modelling framework to
variables that are not Normally distributed and
don’t meet homogeneity of variance

e What does Generalized mean?

* Aglm s a flexible generalization of ordinary linear
regression

e Still assuming a linear relationship
* If not linear—try a GAM instead.



You have already done a GLM!

* Linear regression is also a special case of a GLM
* Link function: identity
* Probability distribution: Gaussian (Normal).

e Linear predictor and the parameter for Gaussian
distribution are identical (response variable is in
same units)



When is a GLM useful

* Response variable has a distribution other than the
normal (Gaussian) distribution, and transformation
of the data is undesirable or impossible.

* Examples:

* Binary response data (1 or O, dead or alive)

e Data that are counts (number of offspring, leaves, or
tattoos).

* Analysis of contingency tables (confusion matrices).



Advantages of GLMSs vs
transforming response variable

* More flexible than simply transforming variables.

* Yields more familiar measures of the response variable
than data transformations.

* Avoids the problems associated with transforming 0’s
and 1’s. For example, the logit transformation of O or 1
can’t be computed.

* Retains the same analysis framework as linear
models.

* glm() can handle data having other probability
distributions than the ones used in these examples,
including exponential and gamma distributions.



Generalized linear model

The model still includes a linear predictor But the
predicted Y-values are not modelled directly

Non-normal distributions of errors and unequal error
variances are ok because specified by link function

Uses maximum likelihood to estimate parameters
Uses log-likelihood ratio tests to test parameters

R Code: fit models using glm()

Predicted Y-values are NOT modelled directly (different units,
different scale)



Generalized linear model

 The model still includes a linear predictor But the
predicted Y-values are now transformed

* All gims have these basic parts
1. Error structure (probability distributions)
2. Linear predictor
3. Link function



Don’t worry=2>The R coding for GLMS
IS not a huge change from Im

* The R Code to fit a model is similar to Im(), except that
now you have to also specify an error distribution and
link function must be specified using
the family argument.

* The outputs are a bit different since not modelling
response variable directly (have to do inverse of link fx
to get back to original response), but lots of overlap
with Im()

Make sure you’re comfortable with Im before diving into gim



Assumptions of GLMS



Assumptions

e Statistical independence of data points
* Use glm if only fixed effects

* Use glmm if mixed-effects (e.g. repeated measures,
random effects)

* Assumes linear relationship—=21f not, do a GAM first

* Correct specification of the link function for the
data.

* The variances of the residuals correspond to that
assumed by the link function.



Evaluating assumptions of the gIm()
fit

* Do the variances of the residuals correspond to those
assumed by the chosen link function?

* The log link function assumes that the Y values are
Poisson distributed at each X.

* A key property of the Poisson distribution is that within
each treatment group the variance and mean are equal
(i.e., the glm() dispersion parameter = 1). But real data
rarely show this.




Correcting for overdispersion

e Assume the variance of the error distribution is
exactly specified by poisson distribution.

* Typically, however, the error variance for count data
is greater than that specified by the poisson
distribution termed “overdispersion”



If the variances of the errors in the data are not in agreement
with the distributions, use the following instead.

Logistic regression example with binomial
family = quasibinomial(link = "logit")

Log-libear regression example with poisson
family = quasipoisson(link = "log"))



Using GLMS to model error
structures

* Up to this point, we have dealt with the statistical
analysis of data with normal errors

e But in reality many kinds of data have non-normal errors

* Examples. (not exhaustive)
* errors that are strictly bounded (as in proportions);

e errors that cannot lead to negative fitted values (as in
counts).

* Options to “fix” this
1. Transformation of the response variable
2. Non-parametric methods

3. GLM allows the specification of a variety of different error
distributions



Error distributions

Poisson errors, useful with count data;
binomial errors, useful with data on proportions;

gamma errors, useful with data showing a constant coefficient of variation;

exponential errors, useful with data on time to death (survival analysis).



Linear predictors and link
functions



Link Functions

* One of the difficult things to grasp about GLMs is
the relationship between the values of the
response variable (as measured in the data and

predicted by the model in fitted values) and the
linear predictor.

The thing to remember is that the link function

“links” or relates the mean value of y to its linear
predictor.

Link function literally “links” the linear predictor and
the parameter for probability distribution



Link function relates mean value
of y to it’s linear predictor

* The value of the linear predictor, is obtained by
transforming the value of y by the link function

* The predicted value of y is obtained by applying
the inverse of the link function to the linear
predictor

Because you are going through a link function, the units are not the same as your
response variable. You need to do the inverse of the link fx to report the values.



Several link functions to choose
from

Common probability distributions and their canonical link
functions (common pairings, but not the only options).

Error Canonical link

normal identity
poisson log
binomial logit

Gamma reciprocal




Specity error structure with family
argument

* Normal
e glm(y~x, family=identity)
* identity link function
e Poisson errors, useful with count data
e glm(y ~ x, family = poisson ) or family=quasipoisson
* log link function

* binomial errors, useful with data on proportions
* glm(y ~ x, family = binomial ) or family=quasibinomial

* exponential errors, useful with data on time to death
(survival analysis)
e glm(y ~ x, family = exponential )
* gamma errors, useful with data showing a constant
coefficient of variation



2 most common link
functions:logistic (aka logit)

* Used to model binary data (e.g., survived vs died)

* The link function logﬁ is also known as the log-
odds



Common link functions:log

* Natural log (i.e., base e)
* log(predicted y values) =n =645+ 6, X; + 6,X, + ...
* Greek mu Greek eta

e Usually used to model count data (e.g., number of
mates, etc)

* Link function: log(predicted y values)

* Inverse function to get predicted y
values:predicted Y values = e



Start the log link function example
with wasps



Back to the wasp example form
MILE




Wasp example

This example was used previously in Likelihood lecture. My goal here is to
connect what glm() does with what we did by brute force with likelihood
previously.

The wasp, Trichogramma brassicae, rides on female cabbage white butterflies,
Pieris brassicae. When a butterfly lays her eggs on a cabbage, the wasp climbs
down and parasitizes the freshly laid eggs.

Fatouros et al. (2005) carried out trials to determine whether the wasps can
distinguish mated female butterflies from unmated females. In each trial a
single wasp was presented with two female cabbage white butterflies, one a
virgin female, the other recently mated.

Y = 23 of 32 wasps tested chose the mated female. What is the proportion p of
wasps in the population choosing the mated female?



* Number of wasps choosing the mated female fits a
binomial distribution

* Under random sampling, the number of “successes” in
n trials has a binomial distribution, with p being the
probability of “success” in any one trial.

* To model these data, let “success” be “wasp chose
mated butterfly”

* Y=23 successes
* N=32 trials
* Goal is to estimate the probability of success “p”



Use gim() to fit a constant, and
so obtain the ML estimate of p

* The data are binary. Each wasp has a measurement
of 1 or 0 (“success” or “failure”) for choice: 1110
1110101011110101111101110011

e 7 <- glm(choice ~ 1, family = binomial(link="logit”))

* Family specifies the error distribution (binomial)
and the link function (logit)



estimate of proportion
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Use gim() to fit a constant, and
so obtain the ML estimate of p

Eits a model having only a constant. Use the link function appropriate for binary
ata:

Eits a model having only a constant. Use the link function appropriate for binary
ata:

logﬁ =P

u here refers to the population proportion (p) but let’s stick with p symbol here
to use consistent notation for generalized linear models.

Fitting will yield the estimate,B.

The estimate of proportion i is then obtained using the inverse function:



Use summary() for estimation

Use summary () for estimation
summary(z)

Estimate Std. Error
(Intercept) 0.9383 0.3932

0.9383 is the estimate of S (the constant on
the logit scale). Convert back to ordinary scale
(plug into inverse equation) to get estimate of
population proportion:

eB £0-9383

1+ eP . 1 + ¢0.9383 = 0.719

=

This is the ML estimate of the population
proportion. This is identical to the estimate]
obtained last week using likelihood function.
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Confidence intervals of
GLM



Confidence intervals
summary(z)

Estimate Std. Error
(Intercept) 0.9383 0.3932

95% confidence limits:

myCI <- confint(z) # on logit scale
exp(myCI)/ (1 + exp(myCI)) # inverse logit scale

2.5 % 97.5 %
0.5501812 0.8535933

0.550 < p £0.853 is the same result we obtained last week for likelihood based
confidence intervals using likelihood function (more decimal places this week).



Avoid using summary () for hypothesis testing

summary(z)

Estimate Std. Error
(Intercept) 0.9383 0.3932

The z-value (Wald statistic) and P-value test the null hypothesis that = 0. This is
the same as a test of the null hypothesis that the true (population) proportion
u=0.5, because

Agresti (2002, Categorical data analysis, 2" ed., Wiley) says that for small to
moderate sample size, the Wald test is less reliable than the log-likelihood ratio
test.




Log-likelihood ratio
test using glm



Use anova(null,modell) to
compare models with LRT

 Last week we calculated the log-likelihood ratio test

for these data “by hand”.
Here we’ll use glm() to accomplish the same task.

* “Full” model (b estimated from data):
* z1 <- glm(y ~ 1, family = binomial(link="logit”))

* “Reduced” model (b set to 0 by removing intercept
from model):

* 20 <- glm(y ~ O, family = binomial(link="logit”))



Use anova () to test hypotheses
anova(z0, zl1l, test = "Chi") # Analysis of deviance

Model 1: y ~ 0 # Reduced model
Model 2: y ~ 1 # Full model

Analysis of deviance table:
Resid. Df Resid. Dev Df Deviance P(>|Chi])
1 32 44.361
2 31 38.024 1 6.337 0.01182 *

The deviance is the log-likelihood ratio statistic (G-statistic). It has an approximate
%2 distribution under the null hypothesis.

Residual deviance measures goodness of fit of the model to the data.

G =6.337 is the identical result we obtained “by hand” using log likelihood ratio test
last week.



Workshop



2.

3.
4.
5.

Workshop

Read and examine data
* Do a quick plot of the data

Fit a GLM
* What probability distribution is the Y variable?
* What is the appropriate link function?

Visualize the model (plot it)
Extract useful information from model

Calculate likelihood-based 95% Cl



Sections of the Workshop

* Natural selection in song sparrows
e Binary response (dead or alive)
* Logit link function

* Crab satellites
e Poisson distribution
* Log link function

* Prion resistance
* Contingency table
* Poisson distribution
* Log link function



R Tips Page



R Tips Page-Fit a model glm()

* GIm() is similar to Im() except, must specify

1. grrog distribution (e.g binomial=binary, poisson =count
ata

2. link function specified using the family argument.
* Logit==logistic

e Assume that the variance of the error distribution is
exactly specified by the distribution

* Fix: If it’s not, use the “quasi-" versions of each
distribution
e Output includes estimate of the dispersion parameter (a value

greater than one indicates overdispersion, whereas a value less
than 1 indicates underdispersion).



Fit a glm() withpoisson and quasipoisson error
distributions on count data

* modell<- glm(response ~ explanatory, family = poisson(link="log"), data =
mydata)

* Fix: Use”quasi-"distribution instead if overdispersion
* modell<- glm(response ~ explanatory, family = quasipoisson(link = "log"), data =
mydata)



Fit a glm() with binomial and quasibinomial
error distributions

modell<- gIm(Y ~ X, family = binomial(link="logit"), data = mydata)

Assume that the variance of the error distribution is exactly specified by
the binomial distribution

If error variance overdispersed—> Fix by using ‘quasi-” instead: Output will
include estimate of dispersion parameter (if > 1 indicates overdispersion;
if < 1 indicates underdispersion).

modell<- glm(Y ~ X, family = quasibinomial(link = "logit"), data = mydata)

Type”help(family)” to see other error distributions and link
functions that can be modeled using gim().



R Tips Page: Useful glm commands on modell

summary(modell) # parameter estimates, overall model fit
coef(modell) # model coefficients

resid(modell) # deviance residuals

predict(modell) # predicted values on the transformed scale
predict(modell, se.fit = TRUE). # Includes SE's of predicted values
fitted(modell) # predicted values on original scale
anova(modell, test = "Chisq") # Analysisa of deviance - sequential

anova(modell, model2, test = "Chisq") # compare fits of 2 models, "reduced" vs
"full”

anova(modell, test = "F") # Use F test for gaussian, quasibinomial or
quasipoisson




