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Outline for today
GLMs

• What is a generalized linear model
• Advantages and assumptions of GLMs
• Linear predictors and link functions

• Example: fit a constant (the proportion)
• Analysis of deviance table

• Example: fit dose-response data using logistic regression
• Example: fit count data using a log-linear model

• Modeling overdispersion (excessive variance)
• Example: Modeling contingency tables



Review linear model



• Y=mx+b
• Y is response variable
• X is explanatory variable
• Errors normally distributed with equal variance at 

all values of the X variables
• Uses least squares to fit model to data and to 

estimate parameters
• R code: uses lm() for fixed effects only or lme() if 

mixed-effects linear model

Review: fitting a linear model in R 



Review: fitting a linear model in R 

• Can x predict y with a linear equation?
• Linear regression—predictive with numeric x
• z <- lm(y ~ x)
• Scatter plot with a line

• Does y differ among x categories?
• Single factor ANOVA —not predictive , categorical X
• z <- lm(y ~ x) 
• Box-plot

Predicted Y-values are modelled directly in a linear model (same units, 
same scale)



What is a GLM and why use 
it?



With linear modelling (lm or lme), central 
assumption is that variance is constant (flat line), 

Why use GLMs

But in many practical applications, variance is not constant, so 
this assumption is invalid

Homogeneity of 
variance=variance is 

constant



Variance often increases 
linearly with the mean

But…with count data (often zero-inflated) 



variance can be an inverted U-shaped 
function of the mean (bottom left). 

But…with proportion data (e.g. success vs failure), 



GLMs are an extension of regular 
linear modelling

• GLMs extend the linear modelling framework to 
variables that are not Normally distributed and 
don’t meet homogeneity of variance
• What does Generalized mean?
• A glm is a flexible generalization of ordinary linear 

regression
• Still assuming a linear relationship
• If not linear—try a GAM instead. 



You have already done a GLM!

• Linear regression is also a special case of a GLM
• Link function: identity
• Probability distribution: Gaussian (Normal). 
• Linear predictor and the parameter for Gaussian 

distribution are identical (response variable is in 
same units)



When is a GLM useful

• Response variable has a distribution other than the 
normal (Gaussian) distribution, and transformation 
of the data is undesirable or impossible. 
• Examples:
• Binary response data (1 or 0, dead or alive) 
• Data that are counts (number of offspring, leaves, or 

tattoos). 
• Analysis of contingency tables (confusion matrices).



Advantages of GLMs vs 
transforming response variable

• More flexible than simply transforming variables. 
• Yields more familiar measures of the response variable 

than data transformations.
• Avoids the problems associated with transforming 0’s 

and 1’s. For example, the logit transformation of 0 or 1 
can’t be computed.
• Retains the same analysis framework as linear 

models.
• glm() can handle data having other probability 

distributions than the ones used in these examples, 
including exponential and gamma distributions.



Generalized linear model
• The model still includes a linear predictor But the 

predicted Y-values are not modelled directly
• Non-normal distributions of errors and unequal error 

variances are ok because specified by link function
• Uses maximum likelihood to estimate parameters
• Uses log-likelihood ratio tests to test parameters
• R Code: fit models using glm()

Predicted Y-values are NOT modelled directly (different units, 
different scale)



Generalized linear model

• The model still includes a linear predictor But the 
predicted Y-values are now transformed

• All glms have these basic parts
1. Error structure (probability distributions)
2. Linear predictor
3. Link function



Don’t worryàThe R coding for GLMS 
is not a huge change from lm

• The R Code to fit a model is similar to lm(), except that 
now you have to also specify an error distribution and 
link function must be specified using 
the family argument.
• The outputs are a bit different since not modelling 

response variable directly (have to do inverse of link fx
to get back to original response), but lots of overlap 
with lm()

Make sure you’re comfortable with lm before diving into glm



Assumptions of GLMS



Assumptions

• Statistical independence of data points 
• Use glm if only fixed  effects
• Use glmm if mixed-effects (e.g. repeated measures, 

random effects)
• Assumes linear relationshipàIf not, do a GAM first

• Correct specification of the link function for the 
data.
• The variances of the residuals correspond to that 

assumed by the link function. 



Evaluating assumptions of the glm() 
fit

• Do the variances of the residuals correspond to those 
assumed by the chosen link function?

• The log link function assumes that the Y values are 
Poisson distributed at each X.

• A key property of the Poisson distribution is that within 
each treatment group the variance and mean are equal 
(i.e., the glm() dispersion parameter = 1). But real data 
rarely show this.



Correcting for overdispersion

• Assume the variance of the error distribution is 
exactly specified by poisson distribution. 
• Typically, however, the error variance for count data 

is greater than that specified by the poisson
distribution termed “overdispersion”



If the variances of the errors in the data are not in agreement 
with the distributions, use the following instead. 

Logistic regression example with binomial
family = quasibinomial(link = "logit") 

Log-libear regression example with poisson
family = quasipoisson(link = "log"))



Using GLMS to model error 
structures

• Up to this point, we have dealt with the statistical 
analysis of data with normal errors 
• But in reality many kinds of data have non-normal errors

• Examples. (not exhaustive)
• errors that are strictly bounded (as in proportions); 
• errors that cannot lead to negative fitted values (as in 

counts). 
• Options to “fix” this

1. Transformation of the response variable 
2. Non-parametric methods
3. GLM allows the specification of a variety of different error 

distributions



Error distributions



Linear predictors and link 
functions



Link Functions

• One of the difficult things to grasp about GLMs is 
the relationship between the values of the 
response variable (as measured in the data and 
predicted by the model in fitted values) and the 
linear predictor. 

The thing to remember is that the link function 
“links” or relates the mean value of y to its linear 
predictor.

Link function literally “links” the linear predictor and 
the parameter for probability distribution



Link function relates mean value 
of y to it’s linear predictor

• The value of the linear predictor, is obtained by 
transforming the value of y by the link function

• The predicted value of y is obtained by applying 
the inverse of the link function to the linear 
predictor

Because you are going through a link function, the units are not the same as your 
response variable. You need to do the inverse of the link fx to report the values.



Several link functions to choose 
from

Common probability distributions and their canonical link 
functions (common pairings, but not the only options).



Specify error structure with family 
argument

• Normal
• glm(y~x, family=identity)
• identity link function

• Poisson errors, useful with count data
• glm(y ~ x, family = poisson )  or family=quasipoisson
• log link function

• binomial errors, useful with data on proportions
• glm(y ~ x, family = binomial ) or family=quasibinomial

• exponential errors, useful with data on time to death 
(survival analysis)
• glm(y ~ x, family = exponential ) 

• gamma errors, useful with data showing a constant 
coefficient of variation



2 most common link 
functions:logistic (aka logit)

• Used to model binary data (e.g., survived vs died)
• The link function log !

"#!
  is also known as the log-

odds



Common link functions:log

• Natural log (i.e., base e)
• log(predicted y values) = η = β0 + β1X1 + β2X2 + …
• Greek mu   Greek eta
• Usually used to model count data (e.g., number of 

mates, etc)
• Link function: log(predicted y values) 
• Inverse function to get predicted y 

values:predicted Y values = eη  



Start the log link function example 
with wasps



Back to the wasp example form 
MLE



Wasp example

• This example was used previously in Likelihood lecture. My goal here is to 
connect what glm() does with what we did by brute force with likelihood 
previously.

• The wasp, Trichogramma brassicae, rides on female cabbage white butterflies, 
Pieris brassicae. When a butterfly lays her eggs on a cabbage, the wasp climbs 
down and parasitizes the freshly laid eggs. 

• Fatouros et al. (2005) carried out trials to determine whether the wasps can 
distinguish mated female butterflies from unmated females. In each trial a 
single wasp was presented with two female cabbage white butterflies, one a 
virgin female, the other recently mated. 

• Y = 23 of 32 wasps tested chose the mated female. What is the proportion p of 
wasps in the population choosing the mated female?



• Number of wasps choosing the mated female fits a 
binomial distribution
• Under random sampling, the number of “successes” in 
n trials has a binomial distribution, with p being the 
probability of “success” in any one trial.
• To model these data, let “success” be “wasp chose 

mated butterfly”
• Y=23 successes
• N=32 trials
• Goal is to estimate the probability of success “p”



Use glm() to fit a constant, and 
so obtain the ML estimate of p 
• The data are binary. Each wasp has a measurement 

of 1 or 0  (“success” or “failure”) for choice: 1 1 1 0 
1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1
• z <- glm(choice ~ 1, family = binomial(link=”logit”))
• Family specifies the error distribution (binomial) 

and the link function (logit)





Use glm() to fit a constant, and 
so obtain the ML estimate of p 
• Fits a model having only a constant. Use the link function appropriate for binary 

data:
• Fits a model having only a constant. Use the link function appropriate for binary 

data:
•

• log !
"#!

= 𝛽

•
• μ here refers to the population proportion (p) but let’s stick with μ symbol here 

to use consistent notation for generalized linear models.
•
• Fitting will yield the estimate, &𝛽. 
•
• The estimate of proportion �̂� is then obtained using the inverse function:



Use summary() for estimation 



Confidence intervals of 
GLM







Log-likelihood ratio 
test using glm



Use anova(null,model1) to 
compare models with LRT
• Last week we calculated the log-likelihood ratio test 

for these data “by hand”. 
Here we’ll use glm() to accomplish the same task.
• “Full” model (b estimated from data):
• z1 <- glm(y ~ 1, family = binomial(link=”logit”))
• “Reduced” model (b  set to 0 by removing intercept 

from model):
• z0 <- glm(y ~ 0, family = binomial(link=”logit”))





Workshop



Workshop

1. Read and examine data
• Do a quick plot of the data 

2. Fit a GLM
• What probability distribution is the Y variable?
• What is the appropriate link function?

3. Visualize the model (plot it)
4. Extract useful information from model
5. Calculate likelihood-based 95% CI



Sections of the Workshop

• Natural selection in song sparrows
• Binary response (dead or alive)
• Logit link function

• Crab satellites
• Poisson distribution
• Log link function

• Prion resistance
• Contingency table
• Poisson distribution
• Log link function



R Tips Page 



R Tips Page-Fit a model glm()

• Glm() is similar to lm() except, must specify
1. Error distribution (e.g binomial=binary, poisson =count 

data)
2. link function specified using the family argument.

• Logit==logistic

• Assume that the variance of the error distribution is 
exactly specified by the distribution 
• Fix: If it’s not, use the “quasi-” versions of each 

distribution
• Output includes estimate of the dispersion parameter (a value 

greater than one indicates overdispersion, whereas a value less 
than 1 indicates underdispersion).



Fit a glm() withpoisson and quasipoisson  error 
distributions on count data

• model1<- glm(response ~ explanatory, family = poisson(link="log"), data = 
mydata)

• Fix: Use”quasi-”distribution instead if overdispersion
• model1<- glm(response ~ explanatory, family = quasipoisson(link = "log"), data = 

mydata)



Fit a glm() with binomial and quasibinomial 
error distributions

• model1<- glm(Y ~ X, family = binomial(link="logit"), data = mydata)

• Assume that the variance of the error distribution is exactly specified by 
the binomial distribution

• If error variance overdispersedàFix by using ‘quasi-” instead: Output will 
include estimate of dispersion parameter (if > 1 indicates overdispersion; 
if < 1 indicates underdispersion).

• model1<- glm(Y ~ X, family = quasibinomial(link = "logit"), data = mydata)

Type”help(family)” to see other error distributions and link 
functions that can be modeled using glm().



R Tips Page: Useful glm commands on model1

• summary(model1)    # parameter estimates, overall model fit 

• coef(model1)                      # model coefficients 

• resid(model1)                      # deviance residuals 

• predict(model1)                  # predicted values on the transformed scale 

• predict(model1, se.fit = TRUE).  # Includes SE's of predicted values

• fitted(model1)                  # predicted values on original scale 

• anova(model1, test = "Chisq") # Analysisa of deviance - sequential 

• anova(model1, model2, test = "Chisq")  # compare fits of 2 models, "reduced" vs 
"full”

• anova(model1, test = "F")  # Use F test for gaussian, quasibinomial or 
quasipoisson


