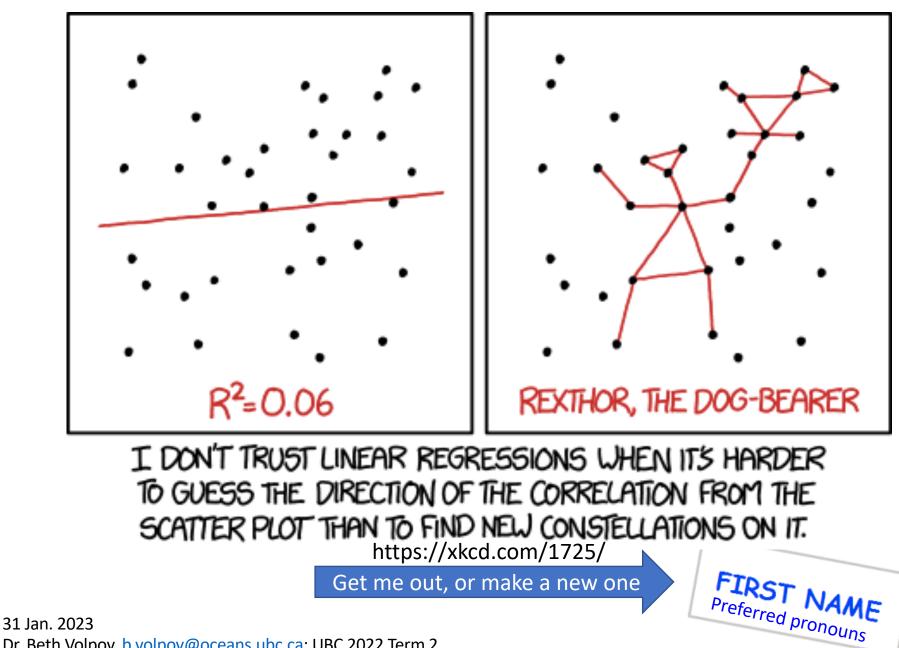
Peer-Feedback Survey 1 survey every Tuesday (constant link)

https://ubc.ca1.qualtrics.com/jfe/form/SV_bvLa6xMXdRk1j6u

Optional: download R script to follow along chickadee example on Canvas under lecture slides R Script_Lecture 04_Linear Models_chickadee example of linear model.R

BIOL 501: Linear Models



Dr. Beth Volpov, b.volpov@oceans.ubc.ca; UBC 2022 Term 2

Outline for today

- What is a linear model
- Example fitting and comparing a model
- Model comparison: full vs reduced
- Assessing model fits and assumptions

#1.scatter plot (examine data)

plot(y ~ x, data = mydata)

#2. Fit linear model

model1<- lm(y ~ x, data=mydata)</pre>

#3. Extract coefficients and information from the model

summary(model1) and model1\$coefficients

#4.Add model line to scatter plot above

abline() or lines() or ggplot()
Plot Cl with visreg()
predict()

#5. Test model fit with anova (test hypothesis)

anova(model1)

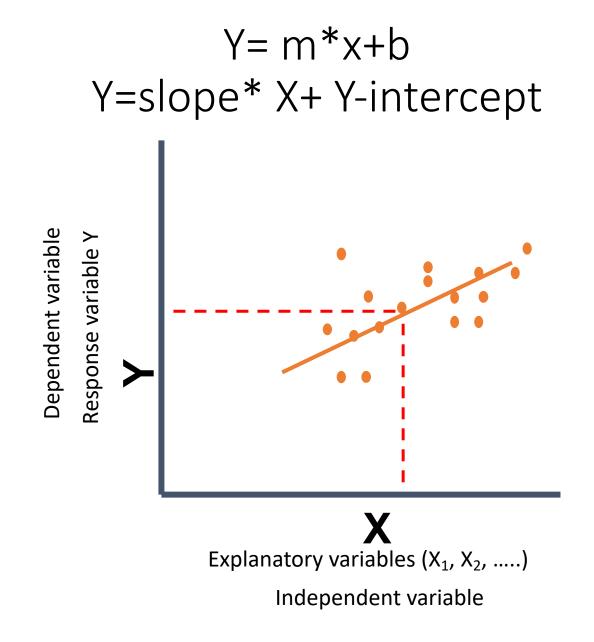
#6. Model comparison between a full and reduced model

anova(null,model1)

#7. Look at model assumptions on the best-fit model (diagnostics) plot(model1)

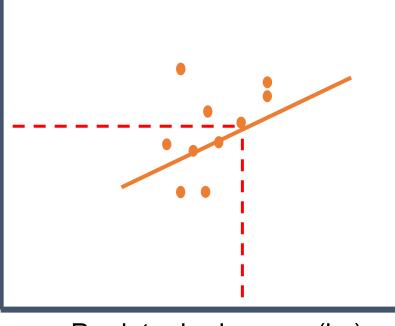
#8. Predict() new data from model line (in workshop)

What is a linear model



Normal random errors with equal variance $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \text{error}$; where β_0 , β_1 , β_2 , ... are the *parameters* of the linear model

Example of linear model (both numerical X,Y)



Predator body mass (kg)

Data: The average number of "dee" notes per alarm call by black-capped chickadees presented with a live, perched predator.

R code example

model1<-lm(y variable ~x variable,data=mydata)

Predator species	Predator	"dee"	
	body mass	notes per call	
	(kg)		
Northern pygmy-owl	0.07	3.95	Published data in Table
Saw-whet owl	0.08	4.08	
American kestrel	0.12	2.75	
Merlin	0.19	3.03	
Short-eared owl	0.35	2.27	
Cooper's hawk	0.45	3.16	
Prairie falcon	0.72	2.19	
Peregrine falcon	0.72	2.80	
Rough-legged hawk	0.99	1.33	
Red-tailed hawk	1.08	2.56	
Great gray owl	1.08	2.06	
Great horned owl	1.40	2.45	Manually entered in R and
Gyrfalcon	1.40	2.24	

#load libraries
library(visreg)

library(ggplot2)

#manually entered from Templeton, C. N., E. Greene, and K. Davis. 2005.Science 308: 1934-1937.
pred.species<-c("northern.pgmy.owl", "saw.whet.owl", "am.kestrel", "merlin", "short.ear.owl", "cooper.hawk"
pred.body.mass.kg<-c(0.07, 0.08,0.12, 0.19,0.35,0.45,0.72, 0.72,0.99, 1.08,1.08, 1.40, 1.40)
dee.notes.per.call<-c(3.95,4.08,2.75,3.03,2.27,3.16,2.19,2.80,1.33, 2.56,2.06,2.45,2.24)
data1<-cbind(pred.species,pred.body.mass.kg,dee.notes.per.call)
data1<-as.data.frame(data1)</pre>

Follow-along or go back and try the code later

>	head(data1)		
	pred.species	<pre>pred.body.mass.kg</pre>	dee.notes.per.call
1	northern.pgmy.owl	0.07	3.95
2	saw.whet.owl	0.08	4.08
3	am.kestrel	0.12	2.75
4	merlin	0.19	3.03
5	short.ear.owl	0.35	2.27
6	cooper.hawk	0.45	3.16

#1.scatter plot (examine data)

plot(y ~ x, data = mydata)

#2. Fit linear model

model1<- lm(y ~ x, data=mydata)</pre>

#3. Extract coefficients and information from the model

summary(model1) and model1\$coefficients

#4.Add model line to scatter plot above

abline() or lines() or ggplot()
Plot Cl with visreg()
predict()

#5. Test model fit with anova (test hypothesis)

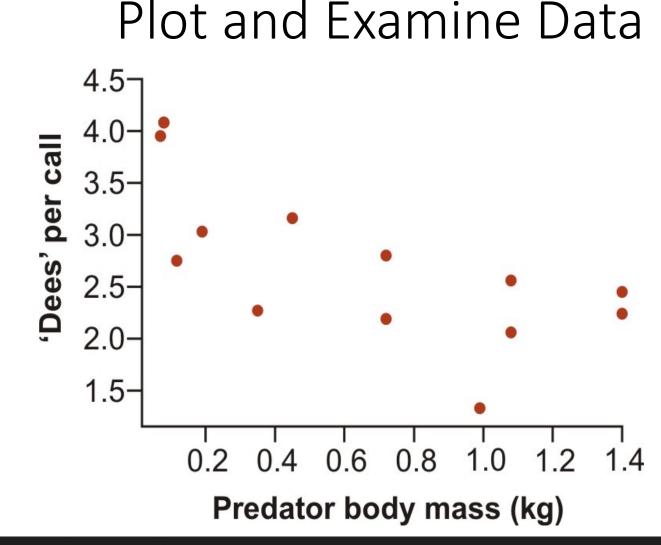
anova(model1)

#6. Model comparison between a full and reduced model

anova(null,model1)

#7. Look at model assumptions on the best-fit model (diagnostics) plot(model1)

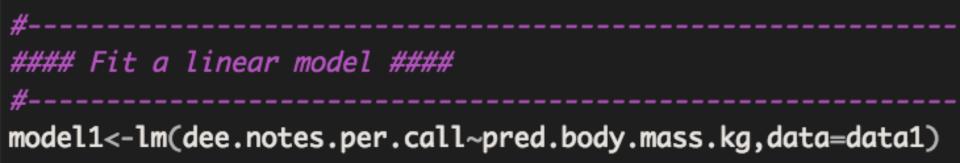
#8. Predict() new data from model line (in workshop)



Fit a linear model with lm()

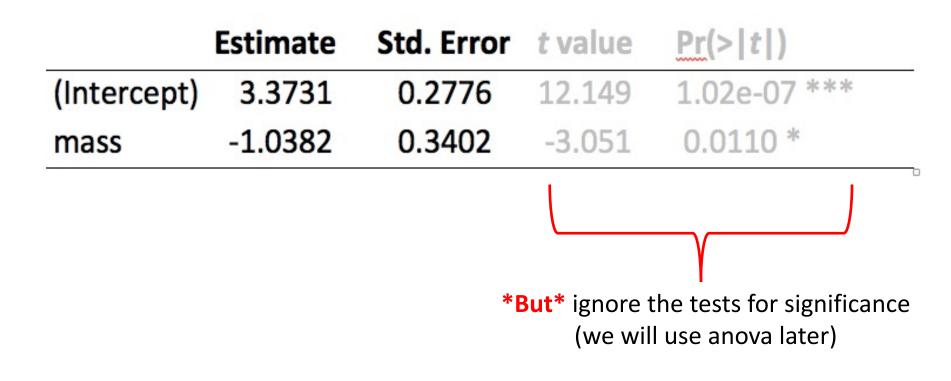
- In R the y-intercept is implicit and doesn't need to be in the model formula
- We are modelling **only fixed** factors with Im()

```
model1<- lm(y ~ x, data=mydata)</pre>
```



Use summary() to get parameter estimates

• Summary() produces a huge table that includes coefficients table, standard error, R2 and more



Faster way to extract only the coefficient values

Coefficients in linear regression are the slope and intercept

model1\$coefficients # (Intercept) pred.body.mass.kg # 3.373115 -1.038208

Plot the fitted model line over the scatter plot of data points

- abline(model1)
- lines() <
- Ggplot→geom_points and geom_smooth
- Plot CI and model line with visreg()

You have lots of options in how to plot model lines

Add model line to plot in Base R with lines()

- Remember linear equation is y=m*x+b
- y=slope*X values+Y intercept

#extract coefficients from model summary with use
indexing

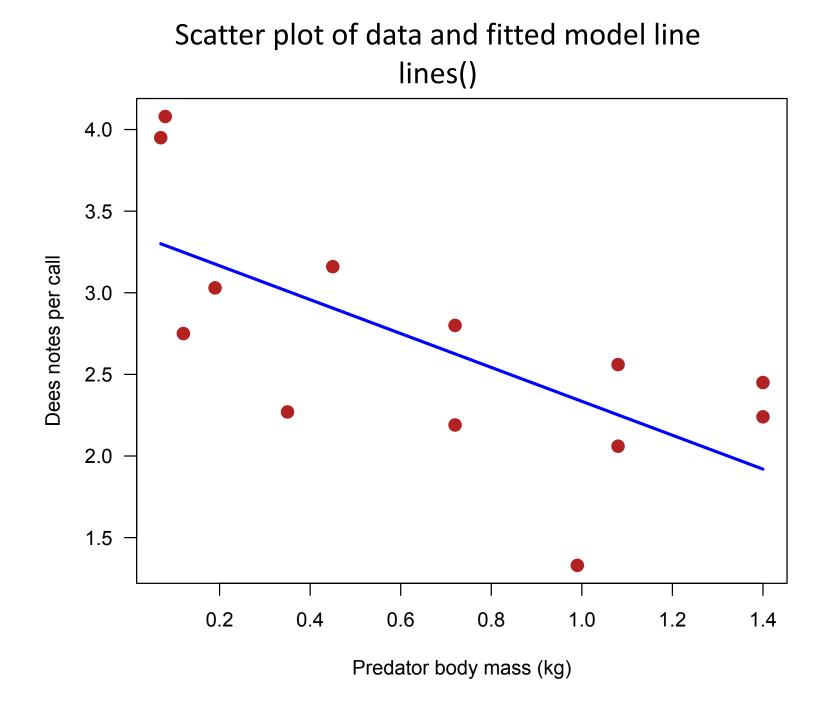
model1\$coefficients #(Intercept) pred.body.mass.kg # 3.373115 -1.038208 Slope Intercept
[1] [2] Add model line to plot in Base R with lines()

y=m*x+b

#extract coefficients from fitted model model1\$coefficients #(Intercept) pred.body.mass.kg (Slope) # 3.373115 -1.038208

[1] [2] m * X + b lines(mydata\$x values,model1\$coefficients[2]*mydata\$x values+model1\$coefficients[1])

Y= -1.038208 * X+ 3.373115



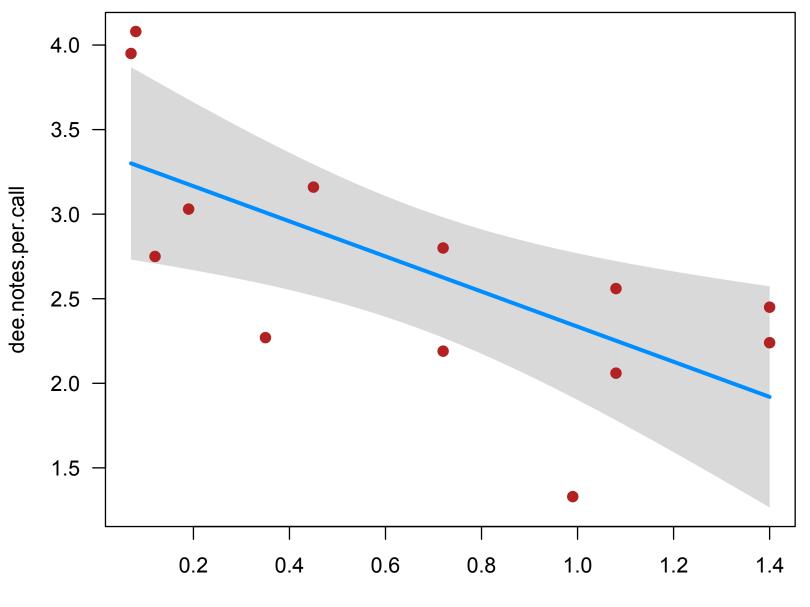
Example with visreg()

• Fast way to do scatter plot, model line, and 95%CI

#basic call with visreg() has model name then X variable
visreg(model1, "pred.body.mass.kg")

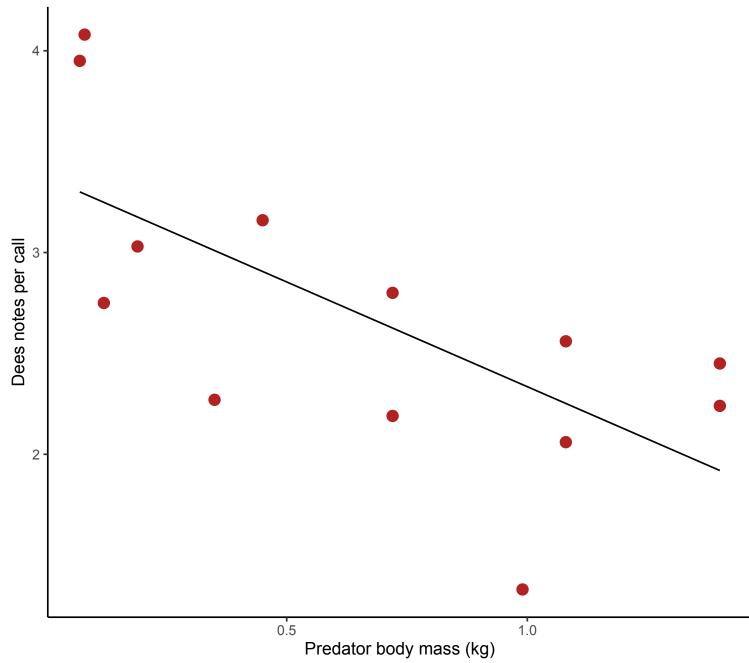
#9modified version of visreg()
visreg(model1, points.par = list(pch = 16, cex = 1.2, col = "firebrick"))

Scatter plot of data and fitted model line, and 95% CI with visreg()



pred.body.mass.kg

Default ggplot() model line



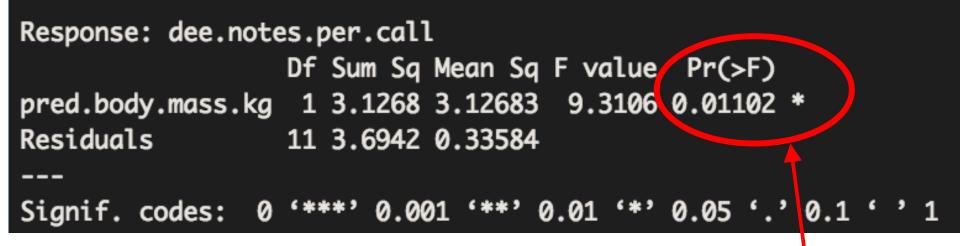
#5. Test model fit with anova (test hypothesis) anova(model1)
#6. Model comparison between a full and reduced model anova(null,model1)
#7. Look at model assumptions on the best-fit model (diagnostics) plot(model1)

#8. Predict() new data from model line (in workshop)

Test the hypothesis with anova(model1)

- Null hypothesis is that slope=0 (that there is no line)
- anova(model1) asks, "Is this model linear?"
- Yields an anova table

Analysis of Variance Table



Test of null hypothesis that slope $\beta_1 = 0$

- Anova() on 2 models compares the model fits with an F-test
- **must be comparing a reduced vs. full model otherwise test is invalid*
- The full model contains the term of interest and the reduced model leaves it out.
 - Reduced and full model only differ by this 1 thing
- Sometimes termed hierarchically nested

• Behind the scenes, this is how R tests effect of predator body mas (x variable) on dees (y variable):

null<- Im(dees ~ 1)</th># fits reduced model (intercept only)model1<- Im(dees ~ body.mass).</td># fits full model intercept and massanova(null,model1)# compares fits with F test

#fit a reduced model (with intercept only, no slope)
null<-lm(dee.notes.per.call~1)</pre>

#fit a full model with intercept and mass
model1<-lm(dee.notes.per.call~pred.body.mass.kg)</pre>

#compare the reduced (null) vs full model
#This does an F test--ANOVA table
anova(null,model1)

Anova(null,model1) produces an F-test R output

Analysis of Variance Table

Don't mix up the anovas

anova (model1)→tests hypothesis "Is it linear?"

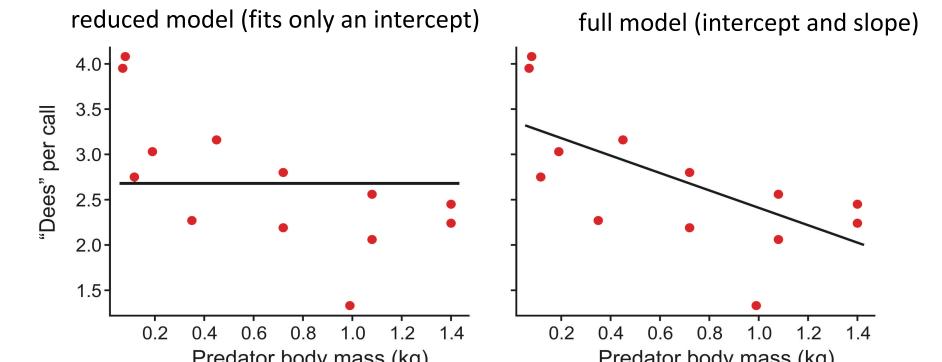
anova(null,model1)→ compares full vs reduced models "Is full model better than the reduced model" or is adding this factor better than not adding it?

Visually, how R compares models anova(null,model1)

The test of predator body mass involves a comparison of these two models

dees ~ 1

dees~ mass



Outline for today

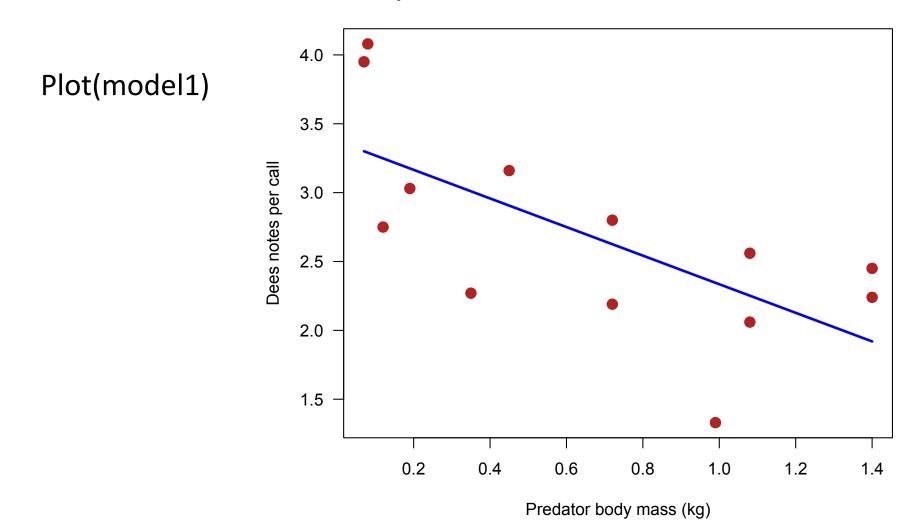
- What is a linear model
- Example fitting and comparing a model
- Model comparison: full vs reduced
- Assessing model fits and assumptions
- Sequential vs marginal testing of terms

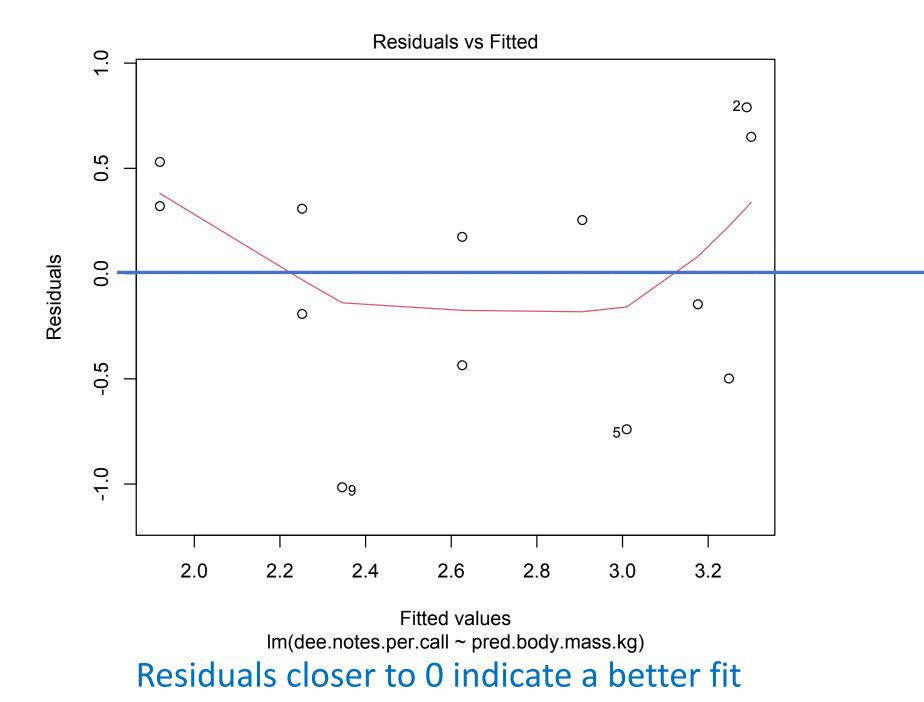
Core Assumptions of linear models

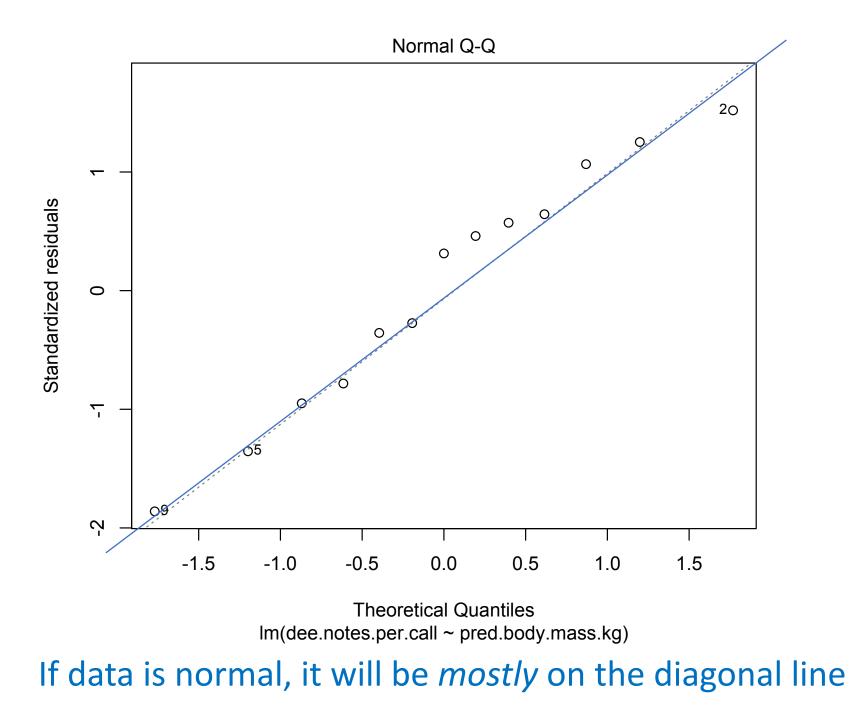
- 1. Normally-distributed errors
- 2. Equal variance of residuals in all groups
- 3. Independent errors (random sample; no pseudoreplication)
- 4. Continuous covariates have the same range of values in all groups
- 5. Sphericity: the variances of the differences between all pairs of factor levels are equal (more next week).

Linear models are reasonably robust to departures from assumptions 1 and 2, especially if sample size is large and balanced. However, outliers can cause problems.

Assess the fit of our model on chickadees with diagnostic plots









Residual vs. Leverage Plot

"Leverage"

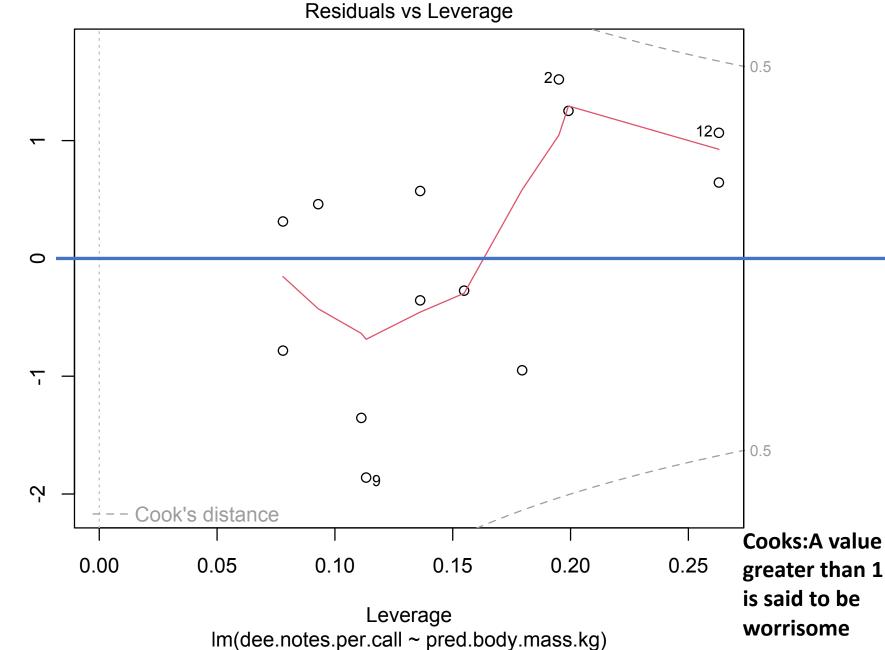
- Calculates the influence that each data point has on the estimated parameters.
- For example if the slope changes a great deal when a point is removed, that point is said to have high leverage.

"Cook's distance"

- Effect of each data point on the predicted values for all the other data points. A value greater than 1 is said to be worrisome.
- Points with high leverage don't necessarily have high Cook's distance, and vice versa.

Ideally, you want both to be low or close to 0 and uniform

Ideally, you want both to be low or close to 0 and uniform



Standardized residuals

Workshop

Workshop Thurs: Linear Models

- Only looking at **fixed** effects → use Im()
- See the "Fit model" and "Graphs & Tables" R Tips pages
- Fit a linear model with lm()
- Obtain coefficient estimates and standard errors
- R²
- 95% CI for a linear model
- Visreg()
- Assess if the assumptions are met
- Prediction intervals with predict()
- Test if a categorical variable is a significant factor in a lm model

#1.scatter plot (examine data)

plot(y ~ x, data = mydata)

#2. Fit linear model

model1<- lm(y ~ x, data=mydata)

#3. Extract coefficients and information from the model

summary(model1) and model1\$coefficients

#4.Add model line to scatter plot above

abline() or lines() or ggplot()
Plot CI with visreg()
predict()

#5. Test model fit with anova

anova(model1)

#6. Look at model assumptions (diagnostics)

plot(model1)

#7. Predict() new data from model line (in workshop)

Extensions to linear models

What if your residuals aren't normal because of outliers? Nonparametric methods exist, but these don't provide parameter estimates.

- Robust regression methods (rlm)
- What if response data are binary or discrete?
 - Generalized linear models (glm)

What if there are random effects?

• Linear mixed effects models (Ime)

What if residuals are not independent because of autocorrelation or phylogeny?

• General least squares methods (gls)