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Outline for today
• Sample size and power
• Randomization?
• Minimize bias and effects of sampling error
• Replication and repeated measures
• Balanced vs unbalanced 
• Warning of Time as a factor
• Analysis should follow design
• Workshop on Thursday: Plan Experiments
• Optional: for loops practice



Statistical Power and Sample Size

• Power: the probability of detecting a true effect, when 
there actually is one (probability of accepting HA if it is 
true)

• High Poweràlower probability of making Type II error 
(low false negative rate)



Button et al (2013) Nature Neuroscience

Problems with Low Power 

• Overestimates effect 
size

• Low reproducibility of 
results

• Wide confidence 
intervals if < n

• Low power studies have a high chance of failing to detect a true effect 
(false negative rate)



Statistical Power and Sample Size

• Power is often low in biology or when working 
with animals

• Plan your sample size (n) wisely
• Minimizing number of animals used (ethics and 

cost)



Goals Planning Sample Size (N)

1.Plan for precision
2.Plan for power
3.Compensate for data loss



In Pairs: Review Precision

• For each below, write if the dart board has high or low 
accuracy and precision

A B

C D



• Choose a sample size big enough to yield narrow 
confidence intervals when estimating an effect

• Narrow CI indicates effect is estimated with high 
precision

Sample size: plan for precision



• Choose a sample size high enough to yield high 
probability of rejecting null hypothesis (≥ 80%) 

Sample size: plan for power



• Use R to simulate data before you collect it to help plan 
sample size (workshop this week)

• Need to estimate key quantities to do power analysis
• Make an educated guess on parameters from literature 
• But may be biased if from low power 

studiesàexpect real effects to be smaller

• Consider a pilot study before the larger experiment to 
get information for a power analysis

Power



• Pwr() package for standard experimental designs

• Use R to simulate data before you collect it to help 
plan sample size (workshop Thurs)

Power Analysis Packages

#calculate power of detecting sig. slope LME model simulated data
library(nlmeU)
Pwr(model1,L=c(”x.variable"=1),alpha = 0.05)



Discussion: Compensate for data loss
Did you loose data during your thesis? Do you 

have a plan to compensate for data loss?



Discussion: Your thesis sample size

Why not collect a huge sample size?

What restrictions do (did) you have on your 
sample size for your thesis data?



What if your sample size is limited?

• Design your study to maximize available sample size
• Do a power analysis and/or pilot study
• Use repeated measures among or within (mixed-effects 

models)



Goals Planning Sample Size (N) Summary

1. Plan for precision. Choose a sample size big enough to 
yield narrow confidence intervals when estimating an 
effect

2. Plan for power. Choose a sample size high enough to 
yield high probability of rejecting null hypothesis (≥ 80%) 

3. Compensate for data loss. Starting sample sizes should 
account for data loss.



Randomization

• Treatments assigned to units at random, such as by 
flipping a coin or using random numbers.

• “Haphazard” assignment has repeatedly been shown to 
be non-random and prone to bias.



Randomization
• Tease apart effects of explanatory variables from those of 

confounding variables
• Randomization doesn't eliminate the variation contributed by 

confounding variables. It eliminates only their correlation with 
treatment. 

• i.e. confounding variables will only be associated with 
treatments by chance 

• Randomization breaks the association between possible 
confounding variables and the explanatory variable, allowing the 
causal relationship between the explanatory and response variables 
to be assessed. 



Perspective

Whole Animal Experiments Should Be More Like Human
Randomized Controlled Trials
Beverly S. Muhlhausler1*, Frank H. Bloomfield2,3,4, Matthew W. Gillman5,6

1 FOODplus Research Centre, School of Agriculture Food and Wine, The University of Adelaide, Australia, 2 Liggins Institute, University of Auckland, Auckland, New

Zealand, 3 Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand, 4 Gravida, National Centre for Growth and Development,

New Zealand, 5 Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston,

Massachusetts, United States of America, 6 Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America

Introduction

The reporting of human randomized
controlled trials (RCTs) was improved
significantly by the introduction of the
CONSORT (Consolidated Standards of
Reporting Trials) statement in 1996 [1].
CONSORT also led to improvements in
the overall quality of human RCTs, bene-
fitting trial design, accounting of subjects,
and rigour of data analysis [2,3]. Whilst
human RCTs and whole animal studies
may have different objectives (e.g., defining
mechanisms versus demonstrating clinical
efficacy), the fundamental requirements for
generating reliable and unbiased data are
very similar, and thus standards of reporting
should also be similar. The introduction of
the ARRIVE (Animal Research: Reporting
In Vivo Experiments) guidelines for conduct
and scientific reporting of animal studies in
2010 [4] represented a major step forward
in attempting to improve the quality of
performing and reporting animal-based
research in the same way that the CON-
SORT statement did for RCTs [1].

Here, we argue that whilst the ARRIVE
guidelines are a major step forward, the
standards of reporting animal experiments
still lag behind those of RCTs. As a result,
the validity of results from animal studies and
their interpretation are frequently in ques-
tion. We put forward a series of suggestions
for modifying the ARRIVE guidelines to
ensure that animal studies catch up. Wide-
spread adoption of these guidelines should
improve the overall quality of animal studies,
thus improving their relevance to humans.

Introduction to the CONSORT
and ARRIVE Guidelines

Well-designed and conducted human
RCTs are widely regarded as providing

the top level of scientific evidence for
health care interventions (National Health
and Medical Research Council of Austra-
lia, 2009). The CONSORT statement
provides guidelines for reporting the
design, conduct, analysis, and interpreta-
tion of RCTs and has been adopted by
over 400 journals and several key editorial
bodies. Its implementation has led to
marked improvements in the quality and
transparency of reporting of RCTs [2,3].

In contrast, the reporting of animal
studies received comparatively little atten-
tion until the publication of the ARRIVE
guidelines in 2010 [4]. These guidelines
were spurred by a survey of 271 studies
reporting original research on rats, mice,
and non-human primates carried out in the
United Kingdom and the United States of
America [5]. The results painted a poor
picture of the quality of reporting in animal
research. Only 59% of the 271 articles stated
the hypothesis or objective of the study, the
number of animals used, and characteristics
of the animals. Few of the papers surveyed
reported using random allocation to treat-
ment group (13%) or blinding of outcome
assessment (14%), and statistical methods
were not described adequately in 30% of the
publications [5]. In a similar review of
animal studies published in Cancer Research,
only 28% reported random allocation of
animals to treatment groups, only 2%
reported blinding of observers to this

allocation, and none reported methods to
determine sample size [6]. Similar concerns
about underreporting crucial aspects of
study design and conduct have been raised
by a recent (June 2012) U.S. National
Institute of Neurological Disorders and
Stroke workshop to ‘‘improve the reporting
of preclinical studies in grant applications
and publications’’ [7]. The authors of the
meeting report emphasized the probable
impact that the gap in standards of reporting
between animal studies and human clinical
trials has had on impairing effective trans-
lation from bench to clinic. For example, the
false positive rate resulting from poorly
performed or reported preclinical experi-
ments may explain why, of the .1,000
treatments investigated for neuroprotection
in stroke, none have proved effective
clinically [8].

Since 2010, the ARRIVE guidelines
have been reprinted by 11 high-impact
international journals, and close to 100
scientific journals now include the ARRI-
VE guidelines in their instructions to
authors [9]. The ARRIVE guidelines
follow the same general principles as the
CONSORT statement and reflect the
growing recognition of the need for
greater uniformity and accountability in
the conduct and reporting of animal-based
research, yet they fall short in key areas.

The core elements of both sets of
guidelines are presented in Table 1, and
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Reducing Bias and Sampling Error: lessons 
learned from clinical trials

The design of clinical trials has been refined because the cost of making 
a mistake with human subjects is so high. 



Reducing Bias and Sampling Error: lessons 
learned from clinical trials

• To reduce bias:
• Simultaneous control group (participants receiving the 

placebo).
• Randomization: treatments were randomly assigned to 

individuals
• Blinding: neither the subjects nor the clinicians knew 

which participants were assigned which treatment 



Reducing Bias and Sampling Error: lessons 
learned from clinical trials

• To reduce the effects of sampling error, the experiment 
included:
• Replication: multiple independent subjects.
• Blocking: subjects were grouped according to country, 

yielding a repetition of the same experiment in different 
settings (“blocks”).

• Balance: the number of participants was nearly equal in 
the two groups within every clinic



Importance of a control group

• A study lacking a control group for comparison cannot determine 
whether the treatment of interest is the cause of any of the observed 
changes. 

• Lab experiments: Control subjects should be perturbed in the same 
way as the other subjects, except for the treatment itself (as far as 
ethical considerations permit). (e.g. “sham operation/procedures)”,

• Fieldwork: applying a treatment of interest may physically disturb the 
plots receiving it and the surrounding areas, perhaps by trampling 
the ground by the researchers. Ideally, the same disturbance should 
be applied to the control plots. 



Blinding Applied to Plants and 
Non-human animals

• Blinding: conceal information from 
participants/researchers about which subjects receive 
which treatment.

• Can be incorporated into experiments on nonhuman 
subjects using coded tags that identify the subject to a 
“blind” observer without revealing the treatment (who 
should also measure units from different treatments in 
random order). 



Blinding Review Terminology 

• Blinding is the process of concealing information from 
participants (sometimes including researchers) about which 
subjects receive which treatment.

• In a single-blind experiment, the subjects are unaware of 
the treatment that they have been assigned. Can be 
assumed in most non-human studies.

• In a double-blind experiment the researchers administering 
the treatments and measuring the response are also 
unaware of which subjects are receiving which treatments.

• Blinding prevents subjects and researchers from changing 
their behavior, consciously or unconsciously, as a result of 
knowing which treatment they were receiving or 
administering. 



Minimizing effects of sampling error:

• The goal of experiments is to estimate and test treatment 
effects against the background of variation between 
individuals (“noise”) caused by other variables. 

• One way to reduce noise is to make the experimental 
conditions constant. Fix the temperature, humidity, and 
other environmental conditions, for example, and use only 
subjects that are the same age, sex, genotype, and so on. 
In field experiments, highly constant experimental 
conditions might not be feasible. 



Replication

• Replication is not only the number of plants used, 
but the number of independent units in an 
experiment. 

• Replicate is the smallest experimental unit to 
which a treatment is independently applied (Zar 
2010)

An “experimental unit” is the independent unit to which treatments are assigned (typically, it is 
the unit that is interspersed).



More details on replication

• An experimental unit might be a single animal or plant if individuals are 
randomly sampled and assigned treatments independently. 

• Or, an experimental unit might be made up of a batch of individual 
organisms treated as a group, such as a field plot containing multiple 
individuals, a cage of animals, a household, a Petri dish, or a family. 

• Multiple individual organisms belonging to the same unit (e.g., plants in 
the same plot, bacteria in the same dish, family members) are likely to 
be more similar to each other, on average, than are individuals in 
separate units (apart from the effects of treatment).

• Erroneously treating the single organism as the independent replicate 
when the chamber or field plot is the experimental unit is 
pseudoreplication.

• Mixed effects models can be used to analyze such data while avoiding 
pseudoreplication.



Pseudoreplication
“use of inferential statistics to test for treatments effects 
with data from experiments where either treatments are 
not replicated….or replicates are not statistically 
independent” -Hurlbert 1984

Pseudoreplication stems from the assumption that one has 
more statistically independent experimental or sampling 
units than is actually the case.



Pseudoreplication

• Replicate is the smallest experimental unit to which a 
treatment is independently applied (Zar 2010)
• Psedoreplication is falsy claiming replicates are 

independent, when they really are not 
• Mixed effects models can be used to analyze such data 

while avoiding pseudoreplication.

Problem of analysis, not design. It happens when the 
structure of the analysis doesn’t match that of the 

experimental design.



Balance

• Balance reduces influence of sampling error on 
estimation and hypothesis testing
• Mixed-effects models can account for unbalance
• Greater replication is more important than greater 

balance



Autocorrelation

• Temporal autocorrelation: Measurements taken 
closer together in time are more likely to be related 
than those taken apart

• Spatial autocorrelation: measurments taken closer 
in space are more likely to be similar than those far 
apart

• Packages in R can model autocorrelation 



Analysis should follow design

• Think about your analysis before you collect data
• Analysis structure should reflect study design
• Avoid pseudoreplication
• Grouped subjects can be incorporated into your analysis 

using “mixed effects models”



Workshop Thurs: Planning Experiments

• Generating random numbers with rnorm() and sample()
• Use loops in R to simulate data and analyze the data many 

times
• This will help you generate estimates of power and 

precision in various study designs 
• For loops!

• Look at “Loop,Repeat” Tab on R Tips page ahead of time
• Stay after class today if you want to practice for loops



How to find data for Assignment #1

1. Ask labmates, supervisor, other grad students
2. Use online archives
3. Data Thief (stay after class if want demo)
4. Manually enter data
5. Yes it’s ok to redo one of your old Figs from 

undergrad

Make sure there is room to improve on the “Bad” graph. Too little 
improvement means we can’t assign many marks.



Assignment #1: Due 9pm Jan 28th

• Self-assessment with rubric prior to turning it in (or try a peer-
assessment)

• Annotate heavily so that your script makes sense to us
• Required header on R script

#Date last updated:
#Date created:
#Author Name: First Last
#STUDENT NUMBER:
#R version:
#Platform (Mac or PC):
#Project Description: BIOL 501
#Goal of this script: Assignment #1: Improve a graph)

• Submit though Canvas as a single pdf with this specific file name 
"LASTNAME.FIRSTNAME.STUDENT NUMBER.ASSIGNMENT 1.PDF



For Loops 
(will need this for workshop)

• [i] is the iteration or counter
• For loop will start at i<-1 by default
• A good way to troubleshoot or create a function is 

to think of stepping through an individual iteration



R Tips Pages:loop repeat

for(i in 1:5){ print("Back off, man, I'm a scientist") }

#for each iteration [i] starting at 1 and going to 5 do 
everything inside the brackets

for(i in 1:5)
{

print("Back off, man, I'm a scientist") 
}



R Tips Pages:loop repeat

for(i in 1:length(depth.m))
{
}

for(i in 1:dim(data)[1])
{
}

Specify total iterations by length of vector (I do this one most often focusing on a vector)

Specify total iterations by length of vector within dataframe



• https://www.zoology.ubc.ca/~schluter/R/Loop.html

• Stay during office hours today if you want to work 
through an example on simulated dive depth data 
for loops

• BIOL 501_Beth's examples of for loops.R

R Tips Pages:loop repeat

https://www.zoology.ubc.ca/~schluter/R/Loop.html


https://xkcd.com/552/



Extra resources



Matloff, Norman. The art of R 
programming: A tour of statistical 
software design. No Starch Press, 
2011.


