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• Goals of model selection 
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• Example 2: Predicting ant species richness 

• Several models may fit about equally well 

• The science part: formulate a set of candidate models 

• Example 3: Adaptive evolution in the fossil record  



Example 1: Fit a polynomial regression model – which degree is best? 

 
Data: Trade-off between the sizes of wings and horns in 19 females of the beetle 
Onthophagus sagittarius. Both variables are size corrected. 
 
 
 
 
 
 
 
 
 
 
Emlen, D. J. 2001. Costs and the  
diversification of exaggerated animal  
structures. Science 291: 1534-1536.



Example 1: Fit a polynomial regression model – which degree is best? 

Start with a linear regression 

 
 



Example 1: Fit a polynomial regression model – which degree is best? 

Why not a quadratic regression instead (polynomial degree 2) 

 



Example 1: Fit a polynomial regression model – which degree is best? 

How about a cubic polynomial regression (degree 3) 



Example 1: Fit a polynomial regression model – which degree is best? 

Better still, a polynomial degree 5 

 



Example 1: Fit a polynomial regression model – which degree is best? 

A polynomial, degree 10 

 
  



The problem of model selection 

R2 and log-likelihood increase with number of parameters in model. 
 
Isn’t this good? Isn’t this what we want – the best fit possible to data? 



The problem of model selection 

What is wrong with this picture? 



The problem of model selection 

Does it violate some principle? 
 
Parsimony principle: Fit no more 
parameters than is necessary. If two or 
more models fit the data almost equally 
well, prefer the simpler model.  
 
“models should be pared down until they 
are minimal adequate”  
     -- Crawley 2007, p325 
 
But how is “minimal adequate” decided? 
What criterion is used?  
 
  



The problem of model selection  
 
Stepwise multiple regression, using stepwise elimination of terms, is a common 
practice 
 
This approach involves fitting a multiple regression with many variables, followed 
by a cycle of deleting model terms that are not statistically significant and then 
refitting. Continue until only statistically significant terms remain. 
 
The procedure ends us up with a single, final model, the “minimum adequate 
model.” 
 
But is this a good idea? Does it yield the best model?  



Does stepwise elimination of terms actually yield the “best” model?  
 
1. What criterion are we actually using to decide which model is “best”? 
 
2. Each step in which a variable is dropped from the model involves “accepting” a 

null hypothesis. What happens if we drop a false null hypothesis? How can a 
sequence of Type 2 errors lead us to the “best” model? 

 
3. How repeatable is the outcome of stepwise regression? With a different sample, 

would stepwise elimination bring us to the same model again?  
 
4. Might models with different subsets of variables fit the data nearly as well? 

 



Instead: choose among models using an explicit criterion 
 
One reasonable criterion: choose the model that best predicts a new observation. 
 
“Cross-validation score” is one way to measure prediction error: 
 

CVscore = 	*𝑒(")$  

 
Where the prediction error 𝑒(")$ = ,𝑦" −	𝑦/(")0

$
 

 
𝑦" is a measurement of the response variable. 
 
𝑦/(") is the predicted value for 𝑦" when the model is fitted to the data leaving out 𝑦". 
 
A larger CVscore corresponds to a worse prediction (more prediction error).   



Choose among models using an explicit criterion 
 
In our beetle example, the CVscore increases (prediction error worsens) with 
increasing numbers of parameters in the model. Here, the simple linear regression 
was “best”. But some other polynomials do nearly equally well.  



What determines prediction errors? 
 
Prediction errors result from both bias and sampling variance (sampling error) in 
model parameter estimates. The effects of bias and sampling varianve are inversely 
related (the bias-variance tradeoff). 
 
The coefficients of the simplest model are likely to be biased, because the true 
relationship is likely to be more complex. But the coefficients of a simple model 
have relatively low sampling error (low sample variance) compared to a more 
complex model.  
 
The coefficients of complex models have lower bias (their long-run averages are 
close to their true values), but the coefficients of complex models have high 
sampling error (high sample variance). 
 
Prediction error is typically minimized somewhere in between.  



What determines prediction errors? 
 
The simplest models have low sampling  
variance but high bias because of  
missing terms (the truth is more complex). 
 
The most complex models have low bias  
but high variance because they require 
estimating too many parameters  
(“overfitting”). 
 
Training error: how well a model fits the  
data used to fit the model.  
Test error: how well a model fits a new  
sample of data. 
                                    
Hastie et al. (2009)  



The problem of model selection  
 
Another problem with my polynomial regression analysis is that 
I’m data dredging. I didn’t have any  
hypotheses to help guide my search.  
This too can lead to non- 
reproducible results.  
 
For example my 9th degree polynomial  
was surprisingly good at prediction.  
But is there any good, a priori  
reason to include it among the  
set of candidate models to  
evaluate? 



Goals of model selection 
 
Some reasonable objectives: 

• A model that predicts well. 

• A model that approximates the true relationship between the variables. 

• Plus a set of models that fit the data nearly as well as the “best” model. 

• To be able to compare non-nested* models, not just compare each “full” model 
to “reduced” models having a subset of its terms.  

*Reduced vs. full models are referred to as “nested models”, because the one 
contains a subset of the terms occurring in the other. Models in which the terms 
contained in one are not a subset of the terms in the other are called “non-nested” 
models. (Don’t confuse with nested experimental designs or nested sampling 
designs.) 



Goals of model selection 
 
To accomplish these goals, we need a model selection approach that includes: 

• A criterion to compare models: 

o CVscore 

o AIC (Akaike’s Information Criterion) 

o BIC (Bayesian Information Criterion) 

• A strategy for searching the candidate models 
 
Typically we are modeling observational data. We are not dealing with data from 
an experiment, where we can make intelligent choices about the model to fit based 
on the experimental design.  



  
AIC (Akaike’s Information Criterion) 
 
Criterion: minimize AIC.  

AIC = 	−2 ln 	𝐿(model	| data) + 2𝑘 
 
k is the number of parameters estimated in the model (including intercept and the 
variance of the residuals, ) 
 
First part of AIC is the log-likelihood of the model given the data. 
 
Second part is 2k, which acts like a penalty – the price paid for including k variables 
in the model (this is an interpretation, not why the 2k is part of the formula). 
 
Just as with the log-likelihood, what matters is not AIC itself but the difference 
between models in their AIC.
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AIC (Akaike’s Information Criterion) 
 

AIC = 	−2 ln 	𝐿(model	| data) + 2𝑘 
 
AIC is an estimate of the expected distance (“information lost”) between the fitted 
model and the “true” model. 
 
There are two reasons why a model fitted to data might depart from the truth.  

1. Bias: The fitted model may contain too few parameters, underestimating the 
complexity of reality. 

2. Variance: High sampling error (low precision) of model parameter estimates. 
There are not enough data to yield good estimates of the many parameters of a 
complex model. 

 
AIC yields a balance between these two sources of information loss.



Example 2: Ant species richness 
Data: Effects of latitude, elevation, and habitat on ant species richness (Gotelli, N.J. 
& Ellison, A.M. 2002. Biogeography at a regional scale: determinants of ant species 
density in bogs and forests of New England. Ecology, 83, 1604–1609.) 
 
   site nspecies habitat latitude elevation 
1   TPB        6  forest    41.97       389 
2   HBC       16  forest    42.00         8 
3   CKB       18  forest    42.03       152 
4   SKP       17  forest    42.05         1 
... 
23  TPB        5     bog    41.97       389 
24  HBC        6     bog    42.00         8 
25  CKB       14     bog    42.03       152 
26  SKP        7     bog    42.05         1 
...  
n = 44 sites 
 
(Bog and forest sites were technically paired by latitude and elevation, but residuals 
were uncorrelated, so we’ll follow authors in treating data as independent for the 
purposes of this exercise)



Example 2: Ant species richness 
dredge() in MuMIn package in R. Provide model with all desired terms:  
 
zfull <- lm(log(nspecies) ~ habitat * latitude * elevation) 
zdredge <- dredge(zfull, evaluate = TRUE, rank = "AIC") 
 
Model selection table (variable names abbreviated; "+" refers to categorical term) 
 
# (“df” is k, the number of parameters: all coefficients plus 1 more for 𝜎! of residuals) 
 (Int)        elv hbt     ltt elv:hbt   elv:ltt hbt:ltt elv:hbt:ltt df  logLik  AIC delta weight 
10.320 -0.0010860   + -0.2008                                        5 -22.273 54.5  0.00  0.288 
13.810 -0.0166000   + -0.2826         0.0003621                      6 -21.846 55.7  1.14  0.162 
10.240 -0.0007565   + -0.2008       +                                6 -21.895 55.8  1.24  0.155 
 9.794 -0.0010860   + -0.1886                         +              6 -22.251 56.5  1.95  0.108 
13.730 -0.0162700   + -0.2826       + 0.0003621                      7 -21.460 56.9  2.37  0.088 
13.290 -0.0166000   + -0.2704         0.0003621       +              7 -21.823 57.6  3.10  0.061 
10.100 -0.0007605   + -0.1974       +                 +              7 -21.893 57.8  3.24  0.057 
13.590 -0.0162700   + -0.2792       + 0.0003621       +              8 -21.458 58.9  4.37  0.032 
11.320              + -0.2301                                        4 -25.909 59.8  5.27  0.021 
15.680 -0.0255800   + -0.3283       + 0.0005794       +           +  9 -21.299 60.6  6.05  0.014 
10.800              + -0.2179                         +              5 -25.890 61.8  7.23  0.008 
 1.736 -0.0013240   +                                                4 -27.548 63.1  8.55  0.004 
 1.659 -0.0009951   +               +                                5 -27.250 64.5  9.95  0.002 
 1.428              +                                                3 -31.875 69.7 15.20  0.000 
10.660 -0.0010860     -0.2008                                        4 -34.438 76.9 22.33  0.000 
... 



Example 2: Ant species richness 
“Best” model (smallest AIC) is the model with the three additive terms Habitat, 
Latitude, and Elevation. 
z <- lm(log(nspecies) ~ habitat + latitude + elevation) 
 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) 10.3180285  2.6101963   3.953 0.000306 *** 
habitat      0.6898845  0.1269432   5.435 2.94e-06 *** 
latitude    -0.2007838  0.0609920  -3.292 0.002085 **  
elevation   -0.0010856  0.0004049  -2.681 0.010610 *   
 
 
 
 
 
 
 
 
  



Example 2: Ant species richness 
Other models are nearly as good as the best. 
 
Each dot refers to a model.  
AIC difference (Δ) is the difference 
between a model’s AIC score and that of 
the “best” model. 
 
The best model has 5 parameters 
(includes 1 for variance of residual) 
But a few other models fit the data 
nearly as well.  
 
AIC difference (Δ) support 
0 – 2 Substantial support 
4 – 7 Considerably less support 
> 10  Essentially no support  



Example 2: Ant species richness 
 
AIC difference (Δ) support 
0 – 2 Substantial support 
4 – 7 Considerably less support 
> 10  Essentially no support 
 
Think of a cutoff based on AIC 
score can be used to generate a 
“95% confidence set of models”, 
analogous to a 95% confidence 
interval for a parameter.  



Example 2: Ant species richness 
 
Another way to form a “95% confidence set of models”, analogous to a 95% 
confidence interval for a parameter, is to use cumulative model weights. 
 
AIC weights measure support that a given model is the “best” model, assuming that 
the “best” model is one of the set of models being compared. 
 
subset(zdredge, cumsum(zdredge$weight) <= .95) 

 
 (Int)        elv hbt     ltt elv:hbt   elv:ltt hbt:ltt df  logLik  AIC delta weight 
10.320 -0.0010860   + -0.2008                            5 -22.273 54.5  0.00  0.313 
13.810 -0.0166000   + -0.2826         0.0003621          6 -21.846 55.7  1.14  0.177 
10.240 -0.0007565   + -0.2008       +                    6 -21.895 55.8  1.24  0.168 
 9.794 -0.0010860   + -0.1886                         +  6 -22.251 56.5  1.95  0.118 
13.730 -0.0162700   + -0.2826       + 0.0003621          7 -21.460 56.9  2.37  0.096 
13.290 -0.0166000   + -0.2704         0.0003621       +  7 -21.823 57.6  3.10  0.067 
10.100 -0.0007605   + -0.1974       +                 +  7 -21.893 57.8  3.24  0.062 

  



Example 2: Ant species richness 
 
Another way to form a “95% confidence set of models”, analogous to a 95% 
confidence interval for a parameter, is to use cumulative model weights. 
 
  



Example 2: Conclusions 
 
If regression is purely for prediction, all of the models with relatively small ΔAIC  
predict about equally well. This means there’s no reason to get too excited over a 
single “best” model. Present the confidence set of models, the same way you would 
a confidence interval for a parameter. 
 
The interpretation is more complex if regression is used for explanation, to identify 
the causes of variation in y. Numerous models might be nearly equally good at 
fitting the data, in which case the causes of variation in y are more elusive. 
 
Keep in mind that, like correlation, “regression is not causation”. It is not possible to 
find the true causes of variation in the explanatory variable without an experiment. 
  



AIC (Akaike’s Information Criterion) 
 
Search strategies: 
One method is a stepwise procedure for selection of variables implemented by 
stepAIC in the MASS library in R. Another is dredge() in the MuMIn package, 
which search all subsets while obeying restrictions. 
 
Both methods obey restrictions. Not all terms are on equal footing. E.g., 
 
• Squared term x2 is not fitted unless x is also present in the model 
• the interaction a:b is not fitted unless both a and b are also present 
• a:b:c not fitted unless all two-way interactions of a, b, c, are present 

 
However, keep in mind that often we are data dredging. The only intelligent 
decision we’ve made is the choice of variables to include in our dredge. No other 
scientific insight was used to decide an a priori set of models.  



How AIC differs from classical statistical approaches 
 
No hypothesis testing. 
 
No null model.  
 
No P-value.  
 
No model is formally 
“rejected”. 
  



How AIC differs from classical statistical approaches 
 
Several models may be about 
equally good.  
 
Your “best” model isn’t 
necessarily the true model. 
This is because AIC balances 
the bias-variance trade-off. It 
does a good job to minimize 
information loss, on average.



How AIC differs from classical statistical approaches 
 
Model uncertainty 
 
AIC difference (Δ) support 
0 – 2 Substantial support 
4 – 7 Considerably less support 
> 10  Essentially no support 
 
The reason for model uncertainty is sampling error. Remember always that the data 
being used to select the “best” model is sampled from a population, and would be 
different if we returned to that same population for another sample. 
 
Think of all the models that have some support as constituting a “confidence set” of 
models, analogous to a confidence interval when estimating a parameter.  



Going further: Multimodel Inference 
 
Multimodel Inference allows inferences to be made about a parameter based on a 
set of models that are ranked and weighted according to level of support from the 
data. It avoids the need to base inference solely conditional upon the single “best” 
model. 
 
“Model averaging” is an example: a model-average estimate takes a weighted 
estimate of the parameter estimates from each model deemed to have sufficient 
support. 
 
Implemented in MuMIn package in R. 
 
The best source for further information is 
Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel 
inference: a practical information-theoretic approach. 2nd. New York, Springer



Avoid data-dredging by formulating a set of candidate models 
  
The information-theoretic approach shows it true advantage when comparing 
alternative conceptual or mathematical models to data 
 
This is where data dredging ends and science begins. 
  
No model is considered the “null” model. Rather, all models are evaluated on the 
same footing. 
 



Example 3: Adaptive evolution in the fossil record 
 
Data: Armor measurements of 5000 
fossil Gasterosteus doryssus 
(threespine stickleback) from an open 
pit diatomite mine in Nevada.  
Time=0 corresponds to the first 
appearance of a highly-armored form 
in the fossil record. 
 
G. Hunt, M. A. Bell & M. P Travis 2008, 
Evolution 62: 700–710.



Example 3: Adaptive evolution in the fossil record 
 
A previous analysis was not able to 
reject a null hypothesis of random 
drift in the trait means. 
 
1 generation = 2 years



Example 3: Adaptive evolution in the fossil record 
 
Hunt et al used the AIC criterion to compare the fits of two evolutionary models 
fitted to the data. 
 
1. Neutral random walk (like Brownian motion) 
Two parameters need to be estimated from the data: 1) initial trait mean; 2) 
variance of the random step size each generation. 
 
2. Adaptive peak shift (Orstein–Uhlenbeck process) 
Four parameters to be estimated: 1) initial trait mean; 2) variance of the random 
step size each generation; 3) phenotypic position of a single “optimum”; 4) strength 
of the “pull” toward the optimum. 
 
 



Example 3: Adaptive evolution in the fossil record 
 
Results: AIC difference (Δ) of neutral model is large (no support) 

The adaptive model beats neutral drift for all three traits.  
 
Akaike weight is the weight of evidence in favor of a model being the best model 
among the set being considered, and assuming that one of the models in the set 
really is the best. A 95% confidence set of models is obtained by ranking the models 
and summing the weights until the cumulative sum reaches 0.95. 
 



Example 3: Adaptive evolution in the fossil record 
 
 
 
 
 
 
 
 
Stepping back from the model selection approach, the authors showed that the 
adaptive model rejects neutrality in a likelihood ratio test (here the models are not 
on equal footing – one of them, the simpler, is set as the null hypothesis). 
 
This suggests that even under the conventional hypothesis testing framework, 
specifying 2 specific candidate models is already superior to an approach in which 
the alternative hypothesis is merely “everything but the null hypothesis.”



Conclusions 
 
Stepwise elimination of terms and null hypothesis significance testing is not the 
ideal approach for model selection. Information-theoretic approaches have explicit 
criteria and better properties.  
 
Using this approach involves giving up on P-values. 
 
These IT approaches work best when thoughtful science is used to specify the 
candidate models under consideration before testing (minimizing data dredging). 
 
Working with a set of models that fit the data about equally well, rather than with 
the one single best model, recognizes that there is model uncertainty. 
 
If you want more certainty about which variables cause variation in the response 
variable, then you will need to do an experiment.  



Digression: Exploring your data can be good 
 

 



Discussion paper for next week: 
 

Cohen. J. 1994. The earth is round (p < 0.05). Am. Psych. 49: 997-1003. 

 

Download from “handouts” tab on course web site. 

Presenters:  Michelle & Marie (!) 

Moderators:  Emily & Zandra 

 

 


