
  



Outline for today  

 

• What is a generalized linear model 

• Linear predictors and link functions 

• Example: fit a constant (the proportion) 

• Analysis of deviance table 

• Example: fit dose-response data using logistic regression 

• Example: fit count data using a log-linear model 

• Advantages and assumptions of glm() 

• Modeling overdispersion (excessive variance) 

• Example: Modeling contingency tables 



Review: what is a linear model 

A model of the following form: 
 
Y = β0 + β1X1 + β2X2 + … 
 

• Y is the response variable 

• The X ‘s are the explanatory variables 

• The b ‘s are the parameters of the linear equation 

• The errors are normally distributed with equal variance at all values of the X 
variables. 

• Uses least squares to fit model to data and to estimate parameters 

• Use lm()  in R when analyzing fixed effects 

  



Review: fitting a linear model in R  

Use lm() in R when analyzing fixed effects 

 

Simplest linear model: fit a constant (the mean) 

z <- lm(y ~ 1) 

 

Linear regression 

z <- lm(y ~ x) # x is numeric 

 

Single factor ANOVA 

z <- lm(y ~ A) # A is categorical  



Review: what is a linear model  

Eg: linear regression: Y = b0 + b1X + error 

The predicted Y-values, symbolized here by µ, are modeled as 

μ = b0 + b1X  
The part to the right of “=” is the linear predictor 

 

  



What is a generalized linear model 

A model whose predicted values are of the form 
 
g(μ) = β0 + β1X1 + β2X2 + … 
 

• The model still includes a linear predictor (to right of “=”) 

• But the predicted Y-values are now transformed 

• g(μ) is called the “link function,” of which there are several types 

• Non-normal distributions of errors OK (specified by link function) 

• Unequal error variances OK (specified by link function) 

• Uses maximum likelihood to estimate parameters 

• Uses log-likelihood ratio tests to test parameters 

• Fit models using glm() in R 



The two most common link functions 

1) Natural log (i.e., base e) 
 
log(μ) = η = β0 + β1X1 + β2X2 + … 
Greek mu   Greek eta 

 
Usually used to model count data (e.g., number of mates, etc) 
 
log(μ)  is the link function. 
 
The inverse function is μ = eη   
 
  



The two most common link functions 

2) Logistic (a.k.a. “logit”) 
 

log
𝜇

1 − 𝜇
= 𝜂 = 	𝛽! + 𝛽"𝑋" + 𝛽#𝑋# +⋯ 

 
         Greek mu   Greek eta 

 
Used to model binary data (e.g., survived vs died) 
 
The link function log $

"%$
  is also known as the log-odds 

 
The inverse function is 𝜇 = 	 &!

"'&!
   

 
  



Example 1: Fit a constant to 0-1 data (estimate a proportion) 

This example was used previously in Likelihood lecture. My goal here is to connect 
what glm() does with what we did by brute force previously. 
 
The wasp, Trichogramma brassicae, rides on female cabbage white butterflies, 
Pieris brassicae. When a butterfly lays her eggs on a cabbage, the wasp climbs down 
and parasitizes the freshly laid eggs.  
 
Fatouros et al. (2005) carried out trials to determine whether the wasps can 
distinguish mated female butterflies from unmated females. In each trial a single 
wasp was presented with two female cabbage white butterflies, one a virgin 
female, the other recently mated.  
 
Y = 23 of 32 wasps tested chose the mated female. What is 
the proportion p of wasps in the population choosing the 
mated female?



Number of wasps choosing the mated female fits a binomial distribution 
 
Under random sampling, the number of “successes” in n trials has a binomial 
distribution, with p being the probability of “success” in any one trial. 
 
To model these data, let “success” be “wasp chose mated butterfly” 
 
Y = 23 successes 
n = 32 trials 
 
Goal:  estimate p 
 
  



Use glm() to fit a constant, and so obtain the ML estimate of p  
 
The data are binary. Each wasp has a measurement of 1 or 0  (“success” or 
“failure”) for choice: 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 
 
z <- glm(choice ~ 1, family = binomial(link=”logit”)) 
 
family specifies the error distribution  
(binomial) and the link function (logit). 
 
 
 
 
 



Use glm() to fit a constant, and so obtain the ML estimate of p  
 
Fits a model having only a constant. Use the link function appropriate for binary 
data: 
 

log
𝜇

1 − 𝜇
= 𝛽 

 
μ here refers to the population proportion (p) but let’s stick with μ symbol here to 
use consistent notation for generalized linear models. 
 
Fitting will yield the estimate,	𝛽. .  
 
The estimate of proportion 𝜇̂ is then obtained using the inverse function: 
 

𝜇̂ = 	 &"#

"'&"#
  



Use summary() for estimation  
summary(z) 
 
             Estimate Std. Error z value Pr(>|z|)   
 (Intercept)   0.9383     0.3932   2.386    0.017 * 
 
0.9383 is the estimate of 𝛽 (the constant on 
the logit scale). Convert back to ordinary scale  
(plug into inverse equation) to get estimate of  
population proportion: 

𝜇̂ = 	
𝑒()

1 + 𝑒()
=

𝑒!.+,-,

1 + 𝑒!.+,-,
= 0.719 

 
This is the ML estimate of the population  
proportion. This is identical to the estimate 
obtained last week using likelihood function. 



Confidence intervals 
summary(z) 
 
             Estimate Std. Error z value Pr(>|z|)   
 (Intercept)   0.9383     0.3932   2.386    0.017 * 
 
95% confidence limits: 
 
myCI <- confint(z)        # on logit scale 
exp(myCI)/(1 + exp(myCI)) # inverse logit scale 
 
    2.5 %    97.5 %  
0.5501812 0.8535933 
 
0.550 ≤ p ≤ 0.853 is the same result we obtained last week for likelihood based 
confidence intervals using likelihood function (more decimal places this week).  



Avoid using summary() for hypothesis testing 
 
summary(z) 
 
             Estimate Std. Error z value Pr(>|z|)   
 (Intercept)   0.9383     0.3932   2.386    0.017 * 
 
The z-value (Wald statistic) and P-value test the null hypothesis that β = 0. This is 
the same as a test of the null hypothesis that the true (population) proportion  
μ = 0.5, because 

𝑒!

1 + 𝑒!
= 0.5 

 
Agresti (2002, Categorical data analysis, 2nd ed., Wiley) says that for small to 
moderate sample size, the Wald test is less reliable than the log-likelihood ratio 
test.  



Use anova() to test hypotheses 
 
Last week we calculated the log-likelihood ratio test for these data “by hand”.  
Here we’ll use glm() to accomplish the same task. 
 
“Full” model (b  estimated from data): 
z1 <- glm(y ~ 1, family = binomial(link=”logit”)) 
 
“Reduced” model (b  set to 0 by removing intercept from model): 
z0 <- glm(y ~ 0, family = binomial(link=”logit”)) 



Use anova() to test hypotheses 
anova(z0, z1, test  = "Chi") # Analysis of deviance 
 
 Model 1: y ~ 0    # Reduced model 
 Model 2: y ~ 1    # Full model 
 
Analysis of deviance table: 
   Resid. Df Resid. Dev Df Deviance P(>|Chi|)   
 1        32     44.361                         
 2        31     38.024  1    6.337   0.01182 * 
 
The deviance is the log-likelihood ratio statistic (G-statistic). It has an approximate 
c2 distribution under the null hypothesis. 
Residual deviance measures goodness of fit of the model to the data. 
G = 6.337 is the identical result we obtained “by hand” using log likelihood ratio test 
last week.



Example 2: Logistic regression 
One of the most common uses of generalized linear models. 
Goal is to model the relationship between a proportion and an explanatory variable 
 
Data: 72 rhesus monkeys (Macacus rhesus) exposed for 1 minute to aerosolized 
preparations of anthrax (Bacillus anthracis).  
 

Goal is to estimate the relationship  
between dose and probability of death. 

 



Logistic regression 
 
Measurements of individuals are 1 (dead) or 0 (alive) 
 
Ordinary linear regression model not 
appropriate because 
 

• For each X the Y observations are 
binary, not normal 

• For every X the variance of Y is not 
constant 

• A linear relationship is not bounded 
between 0 and 1 

• 0, 1 data can’t simply be transformed 



The generalized linear model 
 
g(μ) = β0 + β1X 
 
μ is the probability of death, which depends on concentration X. 
 
g(μ) is the link function. 
 
Linear predictor (right side of equation) is like an ordinary linear regression, with 
intercept b0 and slope b1 
 
Logistic regression uses the logit link function 
 
z <- glm(mortality ~ concentration,  

       family = binomial(link = "logit")) 



The generalized linear model 
 
g(μ) = β0 + β1X 
 
glm() uses maximum likelihood: the 
method finds those values of b0 and b1 
for which the data have maximum 
probability of occurring. These are the 
maximum likelihood estimates. 
 
No formula for the solution.  
glm() uses an iterative procedure to 
find the maximum likelihood estimates 
on the likelihood surface. 
 
  



Use summary() for estimation 
 
z <- glm(mortality ~ concentration,  

    family = binomial(link = "logit")) 
 
summary(z) 
         Estimate Std. Error z value Pr(>|z|)    
 (Intercept)   -1.74452    0.69206  -2.521  0.01171 *  
 concentration  0.03643    0.01119   3.255  0.00113 ** 
 
 Number of Fisher Scoring iterations: 5 
 
Numbers in red are the estimates of b0 and b1 (intercept and slope) which predict 
log(μ / 1 – μ).  
 
Number of Fisher Scoring iterations refers to the number of iterations used before 
the algorithm used by glm() converged on the maximum likelihood solution.  



The generalized linear model 
 
Use predict(z) to obtain 
predicted values on the logit scale 
𝑔(𝜇̂) = 	 𝜂̂ = −1.74 + 0.036𝑋  
 
visreg(z) uses predict() to 
plot predicted values and confidence 
limits on the logit scale.  
See that the function is a line. 
 
The points on this scale are not the 
logit-transformed data. Instead, 
glm() creates “working” values to fit 
model to data on transformed scale.  



The generalized linear model 
 
Use fitted(z) to obtain predicted values on the original scale 

𝜇̂ = 	
𝑒./

1 + 𝑒./  
 
Use  
 visreg(z,scale = ‘response’) 
to get fitted curve and 
confidence bands on the 
original scale.  



The generalized linear model 

LD0! = −
intercept
slope

= −
𝛽.!
𝛽."
= −

0.03643
−1.7445

= 47.88 

 
The parameter estimates from the model 
fit can be used to estimate LD50, the 
estimated concentration at which 50% of 
individuals are expected to die.  
 
 
library(MASS) 
dose.p(z) 
 
            Dose       SE 
p = 0.5: 47.8805 8.168823  



Use anova() to test hypotheses  
 
Analysis of deviance table gives log-likelihood ratio test of the null hypothesis that 
there is no differences among years in mean number of offspring. 
 
anova(z, test="Chisq") 
 
            
 Df Deviance Resid Df Resid Dev P(>|Chi|)     
NULL   71 92.982  
concentration 1 19.020 70 73.962 1.293e-05 

 
 
As with lm(), terms are tested using model comparison (always a “full” vs 
“reduced” model). Default program of action is to fit terms sequentially (“Type 1 
sums of squares”), just as with lm().   



Advantages of generalized linear models 
 

• More flexible than simply transforming variables. (A given transformation of the 
raw data may not accomplish both linearity and homogeneity of variance.) 

• Yields more familiar measures of the response variable than data 
transformations. 

• Avoids the problems associated with transforming 0’s and 1’s. For example, the 
logit transformation of 0 or 1 can’t be computed. 

• Retains the same analysis framework as linear models. 

 



When glm() is appropriate and when it is not 
 
 
 
 
 
 
 
 
 
 
 
 
In second case, analyze the summary statistic (fraction surviving) with lm(). Or, fit 
a generalized linear mixed models using glmm() in lme4 package.  



Assumptions of generalized linear models 
 

• Statistical independence of data points. 

• Correct specification of the link function for the data. 

• The variances of the residuals correspond to that assumed by the link function. 
(I will explain). 



Example 3: Analyzing count data with log-linear regression 
Estimate mean number of offspring fledged by female song sparrows on Mandarte 
Island, BC. 
 
 
 
 
 
 
 
http://commons.wikimedia.org/wiki/ 
File:Song_Sparrow-27527-2.jpg 

 
Linear model assumptions not met: 
 
  Data are discrete counts (non-normal). 
  Variance increases with mean. 



Example 3: Analyzing count data with log-linear regression 
Estimate mean number of offspring fledged by female song sparrows on Mandarte 
Island, BC.  
 
Linear model assumptions not met: 
 
Data are discrete counts (non-normal). 
Variance increases with mean. 
 
Two solutions: 
1. Transform data:  X’ = log(X + 1) 
 
2. Generalized linear model. 
Poisson distribution might be 
appropriate for error distribution.  
So try log link function. 



Example 3: Analyzing count data with log-linear regression 
 
Log-linear regression (a.k.a. Poisson regression) uses the log link function 
                               
log(𝜇) = 𝜂 = 	𝛽! + 𝛽"𝑋" + 𝛽#𝑋# +⋯ 
 
𝜂 is the response variable on the log scale (here, mean of each group on log scale). 
 
Year is a categorical variable. So is analogous to single factor ANOVA. 
 
Categorical variables are modeled in R using “dummy” indicator variables,  
as with lm(). 
 



Use summary() for estimation 
 
z <- glm(noffspring ~ year, family=poisson(link="log")) 
summary(z) 
             Estimate Std. Error z value Pr(>|z|)     
 (Intercept)  0.24116    0.26726   0.902 0.366872     
 year1976     1.03977    0.31497   3.301 0.000963 *** 
 year1977     0.96665    0.28796   3.357 0.000788 *** 
 year1978     0.97700    0.28013   3.488 0.000487 *** 
 year1979    -0.03572    0.29277  -0.122 0.902898     
 
(Dispersion parameter for poisson family taken to be 1) 
 
Numbers in red are the parameter estimates on the log scale.  
Intercept refers to mean of the first group (1975) and the rest of the coefficients are 
differences between each given group (year) and the first group.  
Dispersion parameter of 1 states assumption that variance = mean, which is almost 
never true in ecology.



Predicted values on the transformed scale 
 
Predicted values on the log scale: 
predict(z) 
 
visreg(z) uses predict() to plot 
the predicted values, with confidence 
limits, on this transformed scale. 
 
See that the “data points” on this scale 
are not just the transformed data (we 
can’t take log of 0). Instead,  glm() 
creates “working” values to fit the model 
to the data on the transformed scale.  



Predicted values on the original scale 
 
Predicted values on original scale:  
fitted.values(z) 
 
𝜇̂ = 𝑒./  
 
I have plotted them here using 
visreg() and superimposed the 
original data points. 
 
Note that the fitted values aren’t the 
means of the original data.  
Fitted values are the transformed 
means estimated on the log scale 
(geometric means). 



Use emmeans() to obtain model predicted values on original scale 
 
emmeans(z, "year", type = "response") 
 
Yields model-fitted predicted values and approximate 95% confidence intervals. 
    

year rate SE df asymp.LCL asymp.UCL 
1975 1.272727 0.3401496 Inf 0.7537770 2.148957 
1976 3.600000 0.6000000 Inf 2.5967825 4.990791 
1977 3.346154 0.3587453 Inf 2.7119865 4.128614 
1978 3.380952 0.2837232 Inf 2.8681893 3.985385 
1979 1.228070 0.1467822 Inf 0.9715952 1.552248 

 
Uses a large-sample approximation (this is why degrees of freedom, df, are shown 
as infinite). These confidence limits might not be accurate for small sample sizes.    



Use anova() to test hypotheses  
 
Analysis of deviance table gives log-likelihood ratio test of the null hypothesis that 
there is no differences among years in mean number of offspring. 
 
anova(z, test="Chisq") 
 
 Terms added sequentially (first to last) 
 
       Df Deviance Resid. Df Resid. Dev P(>|Chi|)     
 NULL                    145    288.656               
 year   4   75.575       141    213.081 1.506e-15 *** 
 
 
As with lm(), terms are tested using model comparison (always a “full” vs 
“reduced” model). Default program of action is to fit terms sequentially (“Type 1 
sums of squares”), as with lm().   



Evaluating assumptions of the glm() fit 
 
Do the variances of the residuals correspond to those assumed by the chosen link 
function? 
 
The log link function assumes that the Y values are Poisson distributed at each X. 
 
A key property of the Poisson distribution is that within each treatment group the 
variance and mean are equal (i.e., the glm() dispersion parameter = 1). But real 
data rarely show this. 



Evaluating assumptions of the glm() fit 
 
A central property of the Poisson distribution is that the variance and mean are 
equal (i.e., the glm() dispersion parameter = 1).  
 
Let’s check the sparrow data: 
 
tapply(noffspring, year, mean) 
tapply(noffspring, year, var) 
 
     1975     1976     1977     1978     1979  
 1.272727 3.600000 3.346154 3.380952 1.228070 # mean 
 1.618182 6.044444 3.835385 4.680604 1.322055 # variance 
 
Variances slightly larger than means (typical for real data). 
 
  



Modeling excessive variance 
 
Finding excessive variance (“overdispersion”) is common when analyzing count 
data. Excessive variance occurs because variables not included in the model also 
affect the response variable. 
 
In the workshop we will analyze an example where the problem is more severe than 
in the case of the song sparrow data here. 
 



Modeling excessive variance 
 
Excessive variance can be accommodated with glm() by using a different link 
function, one that incorporates a dispersion parameter that is itself estimated from 
the data.  
 
The glm() procedure to accomplish over (or under) dispersion uses the observed 
relationship between mean and variance rather than an explicit probability 
distribution for the data. In the case of count data, 
 
                variance = dispersion parameter × mean 
 
Method generates “quasi-likelihood” estimates that behave like maximum 
likelihood estimates. 
 



Modeling excessive variance 
Let’s try it with the song sparrow data 
 
z <- glm(noffspring ~ year, family = quasipoisson) 
 
summary(z) 
           Estimate Std. Error t value Pr(>|t|)     
Intercept)   0.24116    0.29649   0.813  0.41736    
year1976     1.03977    0.34942   2.976  0.00344 ** 
year1977     0.96665    0.31946   3.026  0.00295 ** 
year1978     0.97700    0.31076   3.144  0.00203 ** 
year1979    -0.03572    0.32479  -0.110  0.91259    
 
Dispersion parameter for quasipoisson family taken to be 
1.230689 
 
The dispersion parameter is reasonably close to 1 for these data. But typically it is much 
larger than 1 for count data, so I recommend using family = quasipoisson.  



Modeling excessive variance 
 
The point estimates are identical with those obtained using family=poisson 
instead, but the standard errors (and resulting confidence intervals) are wider. 
 
z <- glm(noffspring ~ year, family=poisson(link="log")) 
summary(z) 
             Estimate Std. Error z value Pr(>|z|)     
 (Intercept)  0.24116    0.26726   0.902 0.366872     
 year1976     1.03977    0.31497   3.301 0.000963 *** 
 year1977     0.96665    0.28796   3.357 0.000788 *** 
 year1978     0.97700    0.28013   3.488 0.000487 *** 
 year1979    -0.03572    0.29277  -0.122 0.902898     
 
Dispersion parameter for poisson family taken to be 1 
 
  



Example 4: Modeling contingency tables 
 

Example: Incidence of malaria in female great tits in relation to experimental 
treatment. n = 65 birds. 

 

Grouped bar graph 

Explanatory variable = outer groups; 
response variable = inner groups 



Example 4: Modeling contingency tables 
 
 

Response Treatment  Frequency 
Malaria Control  7 
No Malaria Control  28 
Malaria Egg removal  15 
No Malaria Egg removal  15 

 
 
z <- glm(Frequency ~ Treatment + Response,  
      data = mydata, family = poisson(link = "log")) 
  
The counts are modeled in an analogous way to modeling of means in an ordinary 
linear model. If the standard assumptions of data are met (e.g., independent 
random trials) then  family = poisson is appropriate.   



Example 4: Modeling contingency tables 
 
visreg(z, xvar="Response", by="Treatment")  
 
  



Use anova() to test hypotheses  
 
anova(z, test="Chi") 
 
 Df   Deviance Resid. Df Resid. Dev P 
NULL 3 13.8771    
Treatment 1 0.3850 2 13.4921 0.534942 
Response 1 6.9079 1 6.5843 0.008582 
Treatment:Response 1 6.5843 0 0.0000 0.010288 

 
The interaction between Treatment and Response is the test of association. 
  



Other uses of generalized linear models 
 
The method is especially useful when analyzing higher-order contingency tables, 
where there may be two- and three-way interactions. Each of the interactions can 
be assessed separately. 
 
glm() can handle data having other probability distributions than the ones used in 
my examples, including exponential and gamma distributions. 
 



Discussion paper for next week: 
 

Whittingham et al (2006) Why do we still use stepwise modelling? 

 

Download from “assignments” tab on course web site. 

 

Presenters:  Nicole & ____________ 

Moderators: _________ & __________ 

 


