
Outline for today 

• Random vs fixed effects 

• Two-factor example 

• Why the calculations are different with random effects 

• Unbalanced designs with random effects 

• Examples of experiments with random effects 

• Linear mixed-effects models 

• Example: Estimating repeatability of a measurement 

• Assumptions of linear mixed-effects models 

• An example violating assumptions, with solutions 



What are fixed effects 

Fixed effects are predetermined categories of a variable, of direct interest, and are 

repeatable. An experiment with the same treatment levels could be repeated. 

For example: 

• medical treatments in a clinical trial 

• predetermined doses of a toxin 

• diet or fertilization treatments 

• age groups in a population 

• habitat, season 

Any conclusions reached in the study about differences among groups can be 

applied only to the groups included in the study. The results cannot be generalized 

to other treatments, habitats, etc. not included in the study. 



Example of factorial experiment with fixed effects 

Field transplant experiment to investigate how herbivores affect the abundance of 

the red alga, Mazzaella parksii in the intertidal habitat of coastal Washington State 

using (Harley 2004). I analyzed a subset of treatments: 

 herbivory treatment 

intertidal 

zone 

present absent 

low n = 16 plots n = 16 plots 

mid n = 16 plots n = 16 plots 

 

N = 64 plots in a completely randomized design



Factorial experiment with fixed effects 

Response variable: surface area of red alga, Mazzaella parksii in plots. 

Y = 0 + 1X1 + 2X2 + 2 X1X2 
                 



Linear model for factorial experiment with fixed effects 

z <- lm(sqrtarea ~ herbivores * zone) 

The denominator of the F statistic for the treatment effect is MSresidual 

Source SS df MS F P 

zone  89    1 89    89/238= 0.37 0.54 

herbivory 1512 1 1512 1512/238= 6.36 0.01 

zone*herbivory 2617 1 2617 2617/238= 11.0 <0.01 

residual (error) 14271   60 238     

 

The residuals represent the sole source of random variation in the analysis. 

The residual mean square (MSresidual) is the appropriate quantity to use as a 

reference when asking whether treatment mean squares are larger than random 

variation (chance), i.e., whether F ≫ 1. 



What are random effects 

Randomly sampled categories of a variable, representing groups or clusters of 

measurements or units. An experiment with the same treatment levels could not be 

repeated. For example: 

• randomly sampled families made up of siblings 

• randomly sampled subjects measured repeatedly 

• randomly placed transects each of multiple quadrats in a sampling survey 

• field plots each assigned multiple treatments 

• environment chambers each containing many aquariums 

Groups are assumed to be randomly sampled from a population of groups. 

Therefore, conclusions reached about groups can be generalized to this population. 



What are random effects 

In some cases, the random effects are of no interest themselves – a nuisance.  

• field plots each assigned multiple treatments 

• environment chambers containing aquariums 

In other cases, measuring the variance associated with each level of random 

groupings is one purpose of the study. 

• families of siblings (to estimate heritability, etc) 

• subjects measured repeatedly (to estimate repeatability) 

• transects with multiple quadrats (to estimate α- and β-diversity) 

Repeated measurements of groups are not independent.  

Modeling random effects properly (using mixed effects models) avoids 

pseudoreplication.



Factorial experiment when one of the factors is random 

Futuyma and Philippi (1987) 

 

Fall cankerworm, Alsophila pometaria 

http://cfs.nrcan.gc.ca/subsite/glfc-sugarbush/alsophila-pometaria-images  

 

 

Caterpillars of the fall cankerworm feed on the leaves of hardwood trees. Adult 
female moths are wingless. Many reproduce clonally, producing only daughters 
genetically identical to themselves.  

Research question: What is the effect of tree species on growth; and how much do 

clones vary in growth? (This is a not a question about specific clones but about the 

population of clones.)



Factorial experiment when one of the factors is random 

Design: Sample 9 female moths from a population in NY. Raise larvae from 9 clones 

on leaves of 4 tree species. Measure individual growth after 15 days.  

Two factors: Tree species (fixed), Clone (random) 

 

Interaction plot: 

Mean growth of caterpillars from 9 

families (clones) raised on four tree 

species.  

N = 326 caterpillars total. 

  



Factorial experiment when one of the factors is random 

Caterpillars from the same clone are not independent. There are 326 caterpillars 

but only 9 clones. In this case the residual mean square (MSresidual) from a linear 

model fit is no longer the appropriate quantity to use as a reference when asking 

whether treatment mean squares are larger than expected by chance. To do so 

would commit pseudoreplication.  

Instead, the variance among clones is 

the key to testing treatment effects.  

(Always report df with F statistics in 

your papers to prove you analyzed 

such data correctly.)  



Factorial experiment when one of the factors is random 

The presence of a random factor represents another source of random variation: 

the variation among clones.  

The mean effect of tree species on caterpillar growth is modeled as the mean of 

clone means ± variation among clones. 

  



More reasons why analysis is different with random effects 

1. Unlike fixed groups, the means of the specific random groups (e.g., clones) are 

not of direct interest.  

2. Interest is focused on the variance among the random groups. A goal of the 

Futuyma and Philippi experiment was to estimate these variances, to measure 

the amount of genetic variation in the population. 

3. When a design including random effects is unbalanced, the standard formulas for 

F statistics (as calculated in the above ANOVA table of fixed effects) are not F-

distributed. Standard ANOVA table calculations don’t work with unequal sample 

sizes. Sorry! 

4. With unbalanced designs, mixed models calculate approximate F-statistics and 

degrees of freedom for tests of fixed effects. Results are approximate.  



How to know when you have random effects in your study 

You have random effects: 

• whenever your sampling design is nested: 

quadrats within transects; transects within woodlots; woodlots within districts. 

• whenever your measurements are clustered spatially or temporally within 

randomly sampled units i.e., in blocks, which are typically analyzed as random 

effects.  

• whenever you divide up plots, or families, clones, ponds, etc, and apply 

separate fixed treatments to subplots, or siblings, pond-halves, etc. 

• whenever you take measurements on related individuals. 

• whenever you measure subjects or other sampling units repeatedly. 

  



Caution when analyzing random effects 

Use linear mixed effects models to analyze random effects. 

 

In R, lm() is for fixed effects only. Do not use if you have random effects. 

 

In R, use lmer() in the lme4 and lmerTest packages or lme() in the nlme 

package to analyze models containing random effects. These packages model the 

variance structure of random effects explicitly.  

Tests of treatment effects using the Kenward-Roger or Satterthwaite 

approximations for degrees of freedom are most accurate (available in lmerTest 

package).  



Attributes of linear mixed-effects models 

• They are linear models that include both fixed and random effects. 

• They model different error variance for each level of random variation. 

• Estimation and testing are based on restricted maximum likelihood (REML), 

which can handle unequal sample size. 

• P-values for tests of fixed effects are conservative when designs are unbalanced. 

• Implemented in the lme4 and lmerTest and nlme packages in R. 



Example 1: Study of measurement repeatability (simple nested design) 

The walking stick, Timema cristinae, is a wingless herbivorous insect on plants in 

chaparral habitats of California. Nosil and Crespi (2006) measured individuals using 

digital photographs. To evaluate measurement repeatability they took two separate 

photographs of each specimen. After measuring traits on one set of photographs, 

they repeated the measurements on the second set. 

 

 

 

 



Example 1: Study of measurement repeatability (simple nested design) 

Linear mixed model:  Yi = 0 + ui + error     for individual bugs i 

 

Including a random effect means that  

the analysis follows design 

   

 

     1      2 3     4   5    6  7    8  9    10   (measurements) 

Individual bugs are the random groups in this study, with two repeated 
measurements per group. 

Model has two parts, each with its own source of error variance: 

1) Random part: the measurement of individual bug i:  ui ± random error. 

2) Fixed part: the mean of bug means:  0 ± bug error (i.e., variation among bugs)



Example 1: Study of measurement repeatability (simple nested design) 

library(lmerTest) 

z <- lmer(femurlength ~ 1 + (1|individual)) 

 

Fixed part of the formula: 

femurlength ~ 1 

 

Random part of the formula 

+ (1|individual) 

  



Example 1: Study of measurement repeatability (simple nested design) 

The fixed part of the formula instructs R to fit a constant (intercept) based on the 

fitted values of the random groups (individual bugs) 

femurlength ~ 1 

The random part of the 

formula instructs R to fit a 

constant (an intercept) to the 

two measurements within 

each individual. This yields a 

fitted value for each individual 

walking stick.  

+ (1|individual) 

  



Example 1: Study of measurement repeatability (simple nested design) 

z <- lmer(femurlength ~ 1 + (1|individual)) 

fitted(z) # yields best linear unbiased predictors (BLUPs) shown in plot: 

R fits them all together, 

rather than in two stages, 

yielding variance 

components and BLUPs. 

The BLUPs are not the 

means for each insect. They 

are “shrunk” towards the 

centre compared with the 

individual insect means.  



Example 1: Study of measurement repeatability (simple nested design) 

VarCorr(z) extracts the variance components (square the standard deviations 

to obtain the variances) 

Groups   Name      Std.Dev. 

 individual  (Intercept)  0.032464  = variability among random groups (individuals) 

 Residual    0.018868  = variability within random groups (usual error) 

 

We can use these quantities to calculate the fraction of variation that is among 

individuals (repeatability): 

repeatability = σ2
among / (σ2

among + σ2
within) 

estimate of repeatability = 0.0324642  / (0.0324642 + 0.0188682)  

                                             = 0.75



Example 1: Study of measurement repeatability (simple nested design) 

Estimate of repeatability = 0.75 

That is, an estimated 75% of the variation among measurements is true variation 

among individual insects in their femur lengths, the rest is measurement error.  



Example 2: “Subjects by treatment” repeated measures design 

Cronly-Dillon and Muntz (1965) used the optomotor response to measure color 

vision in the goldfish. Each fish was tested at different wavelength in random order. 

A large value indicates that the fish has 

high sensitivity --- it can detect a low light 

intensity. 

Factors: 

Wavelength (fixed, repeated measure) 

Fish (random) 

 

 

 

Light sensitivity of 5 goldfish to specific wavelengths of light.



Example 3: Split plot design 

 

 

 

 

 

 

 

Factors: 

Predation treatment (fixed), whole ponds 

Competition treatment (fixed), split ponds 

Pond (random)



Assumptions of linear mixed-effects models 

• As with all linear models: Residuals follow a normal distribution with equal 

variance. 

• Groups are randomly sampled from a “population” of groups (i.e., are 

independent and sampled without bias). 

• Group means have a normal distribution. 

• Replicates within groups are also randomly sampled (i.e. independent and 

sampled without bias). 

• No carry-over between repeated measurements on the same subject. 

• Sphericity: the variances of the differences between all pairs of factor levels are 

equal. (Problems can arise when one of the factors is time.) 



Example 4: “Subjects by trials” repeated measures design 

 

 

 

 

 

Factors: 

Rodent treatment (fixed) 

Date (fixed) 

Plot (random) 



Example 4: Warning about “subjects by trials” repeated measures design 

Factors: 

Rodent treatment (fixed) 

Census date (fixed) 

Plot (random) 

Tempting to analyze these data using a  

linear mixed-effects model: 

Fixed part of formula:  

ncolonies ~ treatment + date  

Random part of formula: 

+ (1|plot)   



Example 4: Warning about “subjects by trials” repeated measures design 

Problem: Including census date as a factor would likely lead to a violation of the 

sphericity assumption: among plots, the variance of the pairwise difference 

between values of the response variable will be lower between nearby dates than 

dates that are farther apart.  

Increases Type 1 errors  

(P-values inaccurate) 

 

  



Example 4: Warning about “subjects by trials” repeated measures design 

Analyses of growth curves in time might have the same problem. 

Any repeated measures experiment in which the treatment levels are given in the 

same sequence (i.e., not in random order) might have the same problem. 

Sphericity correction is possible. 

Anova() in car package:  

Mauchly test for Sphericity 

Greenhouse-Geisser and Huynh-Feldt 

corrections to P-values.  



Where to get further advice 

I have found Quinn & Keough to be very useful in understanding design and 

assumptions of mixed-effects models (though it won’t help you with modeling using 

maximum likelihood in R). 

Quinn & Keough 2002. Experimental design and data analysis for biologists 

 

Online books on mixed-effects models in R (see Books tab at course web site): 

Pinheiro and Bates (2000). Mixed-effects models in S and S-PLUS. 

Zuur et al (2009). Mixed effects models and extensions in ecology with R. 

Article: 

Bates, Douglas, et al. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal 

of Statistical Software 67: 1-48. 



Discussion paper for next week: 

 

Murtaugh (2007) Simplicity and complexity in data analysis.  

Ecology 88: 56–62. 

 

Presenters: Zandra & Settare 

Moderators: Isidora & Michelle 

 


