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Estimation and hypothesis testing 

In conventional data analysis we carry out two types of statistical inference. Each is 
founded on a different sampling distribution. 
 
1. Estimation 
Uses the sampling distribution of an estimate: all the values for a parameter 
estimate we might obtain, when sampling from a population, and their 
probabilities. It is used to obtain standard errors, confidence intervals.  
Most methods assume that the sampling distribution is approximately normal. 
 
2. Hypothesis testing 
Uses the null sampling distribution (or null distribution): the probability distribution 
of a test statistic if the null hypothesis is true. We frequently use the t, F, χ2, and 
normal distributions to approximate null distributions, from which P-values are 
calculated.  



Estimation and hypothesis testing 

 

Q: What to do if the assumptions of the best method available are violated, and we 
cannot turn to linear or generalized linear models (because their assumptions 
are also violated)? 

A: Computer-intensive methods.  

An approach in which the power of the computer is used to generate a sampling 
distribution. 

 

1. Estimation: The bootstrap. 

2. Hypothesis testing: The permutation test. 

 



Permutation test 

 
A permutation test generates a null distribution for a statistic measuring 
association between two variables (or difference among groups) by repeatedly and 
randomly rearranging the values of one of the variables.  
 
Rank tests, such as the Mann-Whitney U-test for two samples, are permutation 
tests. The data are first replaced by their ranks, and then the ranks are permuted to 
generate a null distribution. The exact probability distribution of the U-statistic is 
known. But replacing the data by their ranks loses information. 
 
Permute the data themselves! There’s no need to replace the data with the ranks. 
No known probability distribution is available, so we used the computer to generate 
a large number of permutations instead to approximate a null distribution. 
  



Permutation test example 

During mating in the sage cricket, Cyphoderris strepitans, the male offers his fleshy hind wings to the 
female to eat. Females get some nutrition from feeding on the wings, which raises the question, 
“Are females more likely to mate if they are hungry?”  Johnson et al. (1999) addressed this question 
by randomly dividing 24 females into two groups:  
 
One group of 11 females was starved for at least two days. 
Another group of 13 females was fed during the same 
period.  
Each female was put separately into a cage with a single 
(new) male, and the waiting time to mating was recorded.  
 
The data are clearly not normally distribution. 
 
  

  



Permutation test example 

Treatment Time (hrs)  Treatment Time (hrs) 
Starved 1.9  Fed 1.5 
Starved 2.1  Fed 1.7 
Starved 3.8  Fed 2.4 
Starved 9.0  Fed 3.6 
Starved 9.6  Fed 5.7 
Starved 13.0  Fed 22.6 
Starved 14.7  Fed 22.8 
Starved 17.9  Fed 39.0 
Starved 21.7  Fed 54.4 
Starved 29.0  Fed 72.1 
Starved 72.3  Fed 73.6 

   Fed 79.5 
   Fed 88.9 

 
H0: Mean time to mating, 𝜇1 = 𝜇2 
HA: Mean time to mating, 𝜇1 ≠ 𝜇2  (two-tailed test) 
Test statistic: �̅�1 − �̅�2 =  17.73 – 35.98 = –18.26.  



Permutation test example 

Outcome of a single permutation:  
 
Treatment Time (hrs)  Treatment Time (hrs) 

Starved 3.8   Fed 14.7  
Starved 9.0   Fed 21.7  
Starved 3.6   Fed 1.7  
Starved 79.5   Fed 2.1 
Starved 17.9   Fed 1.5  
Starved 22.8   Fed 2.4  
Starved 54.4   Fed 5.7  
Starved 13.0   Fed 39.0  
Starved 9.6   Fed 29.0  
Starved 1.9   Fed 72.1  
Starved 22.6   Fed 88.9  

   Fed 72.3  
   Fed 73.6  

 
Test statistic: �̅�1 − �̅�2 =  21.65 – 32.67 = –11.02.  



Permutation test example 

Results of 10,000 permutations: The null distribution of  �̅�1 − �̅�2  
 

 
 
Tail of distribution: 712/10,000 had a value of �̅�1 − �̅�2 less than or equal to observed value, –18.26.  
P = 2 × 712/10000 = 0.1424  



Permutation test assumptions 

 

• Random samples 
 

• To compare means or medians between groups, permutation tests assume that 
the distribution of the variable has the same shape in every population. 

 
Permutation tests are robust to departures from the equal-shape assumption when 
sample sizes are large (more so than the Mann-Whitney U-test).  
 
Permutation tests have lower power than parametric tests when the sample size is 
small, but they are more powerful than the Mann-Whitney U-test. They have 
similar power to parametric tests when sample size is large.  



Why I don’t love permutation tests (or rank tests): 

 

• Parametric methods provide estimates (with standard errors and confidence 
interval) of a useful parameter. 

• Nonparametric tests, including permutations tests and rank tests, provide only a  
P-value. They do not provide estimates of magnitudes (effect sizes) with 
standard errors or confidence intervals. They perpetuate the mistake that the P-
value is all you need, and that the smallness of the P-value indicates the 
importance of an effect. 

• As our readings and discussions have stressed, the P-value in fact tells us 
nothing about magnitudes or biological importance.  

 
No important conclusion in biology should ever be drawn from a P-value alone.  
Needs to be accompanied by a method for estimation (i.e., confidence intervals). 
Robust methods are one solution, but here I’ll describe the bootstrap.  



Why I love the bootstrap:  

 

• Used for estimation, mainly. 

• Provides standard errors and confidence intervals of useful parameters 
(magnitudes). 

• The method is nonparametric, so doesn’t require normally-distributed data. It 
makes no assumptions about the distribution of the data. 

• It can be applied to virtually any population parameter, including means, 
proportions, and linear model coefficients. 

• It is most handy when there is no ready formula for a standard error or 
confidence interval (e.g., median, trimmed mean, eigenvalue). 

• It even works also for estimates based on complicated sampling procedures or 
calculations (for example, it is used to measure uncertainty in phylogeny 
estimation). 



To understand the bootstrap, let’s review how estimation works 

 
Estimation is the process of inferring a population parameter from sample data.  
 
The value of a sample estimate is almost never the same as the population 
parameter because of random sampling error (chance). 
 
The sampling distribution of an estimate gives all the values we might have 
obtained from our sample, and their probabilities of occurrence. 
 
The standard error of an estimate is the standard deviation of its sampling 
distribution. Standard error therefore measures the uncertainty of an estimate.



Example: Estimate a mean  
 
What we want: 
The mean of a variable in the population  
(e.g., the lengths of all the genes in the 
human genome). 
 
 
What we have instead: 
The sample mean (e.g., based on a random 
sample of n = 100 genes) 
 



The sampling distribution 
 
We don’t know the true mean.  
 
So, we want an approximation of the 
sampling distribution, the distribution of 
estimates we might obtain from random 
sampling and their probabilities.  
 
 
 
What we have instead: 
Just one sample mean 



Standard error 
 
The standard deviation of the sampling 
distribution (the standard error) measures 
the variation of sample estimates around 
the population parameter. 
 
 
Roughly, the standard error tells us how far 
we are from the truth, on average. 



Standard error 
 
If the sampling distribution is 
approximately bell-shaped, then  
about 95% of estimates fall within  
2 SE’s of the population parameter. 
 
 
 
 
Twice the SE therefore provides an 
approximate 95% confidence interval 
for the parameter.



Standard error of the sample mean has a remarkable property 
 
It can be estimated from a single sample! 
 

𝜎�̅� ≈ 𝑠�̅� =
𝑠

√𝑛
 

 
𝑠�̅� is the estimated standard error. It is usually called simply the “standard error of 
the mean” (SE). 
 
This is an unusual feature of �̅�. No assumptions about normality are required yet. 
 
However, the assumption of normality is required if we use the usual formula for 
the 95% confidence interval of the mean. 
 
 



Standard error of the sample mean has a remarkable property 
 
Sadly, many other kinds of estimates do not have this wonderful property. What to 
do? 
 
One answer: make your own sampling distribution for the estimate using the 
“bootstrap”.  
 
Method invented by Efron (1979).



The real sampling distribution 
 

To get real sampling distribution, take 
many random samples from the same 
population and estimate the parameter 
each time. 

Then calculate SE as the standard 
deviation of the resulting sampling 
distribution 

But this is a thought experiment.  

In reality we only have one sample, and 
so only one estimate.  

Rats!



The bootstrap sampling distribution is the next best thing 

 

Pretend the data represent the 
population. Sample many times from 
this pretend “population” instead.  

 

Sampling is with replacement so each 
new bootstrap sample is missing some 
values from the data and has 
duplicates of others.  

 

The standard deviation of resulting 
distribution yields the bootstrap 
standard error  



The bootstrap algorithm 

1. Use the computer to take a random sample of n individuals from the original 
data. The bootstrap sample should contain the same number of individuals as the 
original data: n. Each time an observation is chosen, it is left available in the data 
set to be sampled again (“sampling with replacement”). 

2. Calculate the statistic (estimate) of interest using the measurements in the 
bootstrap sample from step 1. This is the first bootstrap replicate estimate. 

3. Repeat steps 1 and 2 many times (10,000). The frequency distribution of all 
bootstrap replicate estimates yields an approximation of the sampling 
distribution of the estimate. 

4. Calculate the sample standard deviation of all the bootstrap replicate estimates 
obtained in step 3. 

The resulting quantity is called the bootstrap standard error. 



Bootstrap example: sample mean 

Data: Measurements of undulation rate (Hz) of paradise tree snakes (Socha, J. J. 

2002. Gliding flight in the paradise tree snake. Nature 418: 603−604) 
 
n = 8 snakes* 
0.9, 1.2, 1.2, 1.3, 1.4, 1.4, 1.6, 2.0 
�̅� = 1.375 
 
 
 
 
 
 
 
*The bootstrap is not advised for sample sizes this small, 
but I use it here to illustrate.



Bootstrap example: sample mean 
 

hertz <- c(0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0) 

 

1. Use the computer to take a random sample of individuals from the original data 
 

xboot <- sample(hertz, replace = TRUE) 

print(xboot) 

[1] 2.0, 1.3, 1.6, 1.2, 1.6, 1.4, 1.6, 2.0 

 
 
Histogram of the first bootstrap sample:



Bootstrap example: sample mean 
 
2. Calculate the statistic (estimate) using the measurements in the bootstrap 

sample from step 1. This is the first bootstrap replicate estimate. 
 

mean(xboot)  

1.5875 

 

Save the result from the first bootstrap sample: 
 

z <- vector() # initialize 

z[1] <- mean(xboot) # save  

 

 

 



Bootstrap example: sample mean 
 
3. Repeat steps 1 and 2 a large number of times (I used 1000 here).  
 
xboot <- sample(hertz, replace=TRUE) 

z[2] <- mean(xboot) 

xboot <- sample(hertz, replace=TRUE) 

z[3] <- mean(xboot) 

… 

z[1000] <- mean(xboot) 

 
Better idea: create a loop in R to 
accomplish the repeats. 
 
Plot of the bootstrap sampling distribution:



Bootstrap example: sample mean 
 
4. The bootstrap standard error is the standard deviation of all the bootstrap 

replicate estimates obtained in step 3. 
sd(z) 

0.1070 

 
How does it compare with the 
ordinary formula for the standard  
error of the mean? 
sd(hertz)/sqrt(length(hertz)) 

0.1146 

 
The bootstrap SE is a little 
smaller (a consequence of very 
small sample size) but surprisingly 
close, considering how we got it.  



The bootstrap can also be used to calculate a confidence interval 
 

Incredibly, the 2.5th and 97.5th percentiles of the bootstrap sampling distribution are 
an approximate 95% confidence interval. No transformations or normality  
assumptions needed. 

Level    Percentile      

95%   ( 1.175,  1.600 ) 

 

Compare with results from using the  
conventional formula with the  
t-distribution: 

95 percent confidence interval: 

 1.104 1.646 
 

  



Bootstrap confidence intervals 
 

This “percentile” method of 
obtaining bootstrap confidence 
intervals works well if the sampling 
distribution is symmetric and 
unbiased. 

Improved, bias-corrected and 
accelerated (BCa) confidence 
intervals improve accuracy by 
correcting for bias and skew in the 
bootstrap sampling distribution. 

  



Difference between two (or more) groups 
Procedure is similar, but now we resample both groups 
 
1. Use the computer to take a random sample of the data (with replacement, same 

sample sizes) from each group. 

2. Calculate the difference between the two bootstrap samples from step 1. 

3. Repeat steps 1 and 2 a very large number of times (≥1000) 

4. Calculate the sample standard deviation of all the bootstrap replicate estimates 
obtained in step 3. 

The result is the bootstrap standard error of the difference 



Bootstrap example: odds ratio to compare proportions 
 
5th instar Manduca sexta caterpillars were trained to associate a mild electrical 
shock with a specific odor (ethyl acetate; EA). Then they were assayed for learning 
in a Y-choice apparatus as larvae and again as adult moths, after metamorphosis 
(Blackiston et al. 2008. Retention of memory through metamorphosis: can a moth 
remember what it learned as a caterpillar? PLoS ONE 3: e1736) 
 
 Caterpillar 

treatment 
Adult 
response 

learned control 

chose clean air  32 25 
chose EA air   9 21 

total 41 46 
  



Bootstrap example: odds ratio to compare proportions 
 
We’ll use the odds ratio to measure association between caterpillar treatment and 
adult response (difference between the proportions) 

Odds:  if we have a series of independent trials in which the probability of success 
in any one trial is p, then the odds of success is 

p

p
O

−
=

1  

If O = 1, the we say that the “the odds are one to one” 
(recall: log odds is how we modeled a proportion with glm()) 

 
Odds ratio: Compares the odds of success under two treatments: 

 

OR =
O1

O2   



Bootstrap example: odds ratio to compare proportions 

For the caterpillar data, 
 
 Caterpillar treatment 
Adult response learned control 
chose clean air  32 25 
chose EA air   9 21 

total 41 46 
 
learned:                                    control: 
p1 = 32/41 = 0.78                     p2 = 25/46 = 0.54 
O1 = 0.78/0.22 = 3.56             O2 = 0.54/0.46 = 1.19 
 
OR = O1/ O2 = 3.56/1.19 = 2.99 
The odds of choosing the clean air in a trial are about three times greater in the 
treatment group (learned) than in the control group.



Bootstrap example: odds ratio to compare proportions 
 
We want a standard error for this estimate and a 95% confidence interval for the 
true (population) OR. Let 1 indicate “chose clean air”, and 0 indicate “chose EA air”.  
 
Learn group: ( thirty two 1’s and nine 0’s ) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0   
 
Control group: ( twenty five 1’s and twenty one 0’s ) 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   
 
Bootstrap procedure: 
Step 1: take a random sample (with replacement) from each group 
Step 2: calculate OR 
Step 3: repeat 1000 times



Bootstrap example: odds ratio to compare proportions 
 
Bootstrap sampling distribution for OR: 
 
Bootstrap SE = 2.26



Bootstrap example: odds ratio to compare proportions 
 
Bootstrap 95% CI using the percentile method: 
    2.5%    97.5%  
    1.21      8.67 
 
Bootstrap BCa (bias corrected and accelerated) 

    2.5%    97.5%  
    1.14      7.93 
 
Compare with conventional approximate 
CI for odds ratio using formula 
    2.5%    97.5%  
    1.17      7.65 
 
BCa corrects the percentiles for skewness in the sampling distribution, which otherwise 
results in the shape of the bootstrap sampling distribution changing with the estimate; and 
for bias in the estimate.



Summary 
 

• The bootstrap is amazing and useful for estimation. 

• It works in almost any situation (if n not too small). 

• It is approximate, though performs almost as well as parametric methods when 
assumptions of the parametric methods are met. 

• It can also be used for hypothesis testing, though I have not discussed this. 

• Permutation tests are useful for obtaining P-value, but that’s all. 

• Use the bootstrap to estimate magnitudes.  

  



Third assignment: Model selection 
 
See the Homework tab at the course web site. 
 
Due Friday, April 12, 2024.  



Discussion paper for next week: 
 

Palmer (1999) Meta-analysis of fluctuating asymmetry and sexual selection. 

 

Download from Handouts tab on course web site. 

 

Presenters:  Clare & Lauren 

Moderators: Heather & __________ 

 

 

 

http://www.zoology.ubc.ca/~schluter/bio548/readings/palmer%201999%20metaanalysis%20of%20fluctuating%20asymmetry%20and%20sexual%20selection.pdf

