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What is probability 
 

Frequentist definition: 

The probability of an event is the proportion of times that the event would occur if 

a random trial is repeated over and over again under the same conditions. 

 

A probability distribution is a list of all mutually exclusive outcomes of a random 

trial and their probabilities of occurrence. 



Example: binomial distribution 
The binomial distribution is the probability distribution of the number of 

“successes” in n independent trials, when the probability of success p is the same in 

each trial. 

 

 counts up the different ways of getting  

Y successes and n – Y failures  
(e.g., S-S-F; S-F-S; F-S-S) 
 
Graph shows Pr[0], Pr[1] , Pr[2], …  
when p = 0.50 and n = 18
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What is conditional probability 
 

The conditional probability of an event is the probability of that event occurring 

given that a condition is met.  “|” symbol used to indicate “given” 

The probability that the second child born to a couple is a girl, given that their first 

child was a girl, 

Pr[second child is girl | first child is girl]  

Other conditional probabilities: 

Pr[we see an elephant today | we are in the Serengeti] 

Pr[we see an elephant today | we are in Manhattan] 

Pr[ 12 successes in 18 trials | p = 0.50] 

Pr[ 12 successes in 18 trials | p = 0.10]



What is likelihood 

Likelihood is a conditional probability. 

The likelihood of a population parameter equaling a specific value, given the data, is 

the probability of obtaining the observed data given that the population parameter 

equals the specific value. 

L[ parameter = ρ | data ] = Pr[ data | parameter = ρ ] 

L[ p = 0.10 | 12 successes out of 18 trials ] = Pr[ 12 successes in 18 trials | p = 0.10] 

 

Law of Likelihood:  

The extent to which data supports one parameter value or hypothesis against 

another is equal to the ratio of their likelihoods (difference in their log-likelihoods) 

Method invented by R. A. Fisher when a 3rd-year undergraduate.



Likelihood is used a lot in phylogeny estimation 

Three proposed trees of ancestor–descendant relationships between humans and 
the other great apes. The human branch is highlighted. Numbers at the bottom are 
the likelihoods of each proposed tree based on gene sequence data and probability 
model of sequence evolution (Rannala and Yang 1996). The likelihood of the left-
most tree is the highest. 
 

L[ tree = i | gene sequences ] = Pr[ gene sequences | tree = i ] 

 

 
 
What matters is not the likelihood of each tree, but the likelihood of each tree 
relative to the others.



Example 1: Estimate a binomial proportion p 
 
Data: The tiny wasp, Trichogramma brassicae, rides on 
female cabbage white butterflies, Pieris brassicae. When 
a butterfly lays her eggs on a cabbage, the wasp climbs 
down and parasitizes the freshly laid eggs.  
 
Fatouros et al. (2005) carried out trials to determine 
whether the wasps can distinguish mated female 
butterflies from unmated females. In each trial a single wasp was presented with 
two female cabbage white butterflies, one a virgin female, the other recently 
mated. Y = 23 of 32 wasps tested chose the mated female.  
 
What is the proportion p of wasps in the population choosing the mated female? 
 
Y = 23 “successes”, n = 32 trials. Use these data to estimate p. 



Example 1: Estimate a binomial proportion p 
 
Likelihood function for the binomial proportion p 

Data: Y = 23, n = 32 

𝐿[𝑝 | 𝑌 chose mated female] = Pr[𝑌 chose mated female | 𝑝] 

𝐿[𝑝 | 23 chose mated] =  (
32

23
) 𝑝23(1 − 𝑝)9 

For example, the likelihood of p = 0.5, given the data, is 

𝐿[𝑝 = 0.5 | 23 chose mated] =  (32
23

)(0.5)23(1 − 0.5)9 = 0.00653 

in R: 

dbinom(x = 23, size = 32, prob=0.5) 

[1] 0.00653062  



Example 1: Estimate a binomial proportion p 
Easier to work with log-likelihoods 
 

ln 𝐿[0.5 | 23 chose mated] =  ln(32
23

)23 ln(0.5) 9 ln (1 − 0.5) = −5.03125 

 
in R:  
dbinom(x = 23, size = 32, prob = 0.5, log = TRUE) 

[1] -5.031253 

 

 

Repeat for many values of p  
to get the log-likelihood curve: 

 



Likelihood works backward from probability. 
 

We use likelihood to estimate unknown parameters based on known data. 

The parameters are treated as variables, the data are constant. 

 

 

 



Likelihood works backward from probability. 
 
But the likelihood function is not a probability distribution. 

The population proportion p is the variable of the function, but it is not a random 

variable (its value is not determined as the outcome of a random trial). 

 

 



Maximum likelihood estimate 

The likelihood ratio (difference of log-likelihoods) measures relative support for 

alternative parameter values.  The maximum likelihood estimate (MLE) of a 

parameter is the parameter value having the highest likelihood (and log-likelihood), 

given the data. This is the parameter value most strongly supported by the data.  



Maximum likelihood estimate 

The ML estimate could instead have been obtained more easily as 

�̂� =
𝑌

𝑛
=

23

32
= 0.72  

The conventional formula for estimating a proportion yields the ML estimate.  

 

Most formulas you use to  

estimate parameters yield  

maximum likelihood estimates. 



Likelihood-based confidence intervals 

When estimating a single parameter, an approximate 95% confidence interval is 
obtained with the values corresponding to 1.92 log-likelihood units below the 
maximum. 

 
So the approximate 95% CI  
for p in the wasp example is  
0.55 ≤ p ≤ 0.86 
 
 

1.92 = 𝜒0.05,1
2 /2. 

The connection to the χ2  
distribution will become  
apparent later 
  



Maximum likelihood estimation 

 

You don’t need to be a mathematician to use likelihood in your data analysis.  
 
You just need to find a formula for the probability distribution of outcomes for your 
particular situation.  
  



Example 2: Survival rates of characters in Game of Thrones. 
 
 
  

Costumes worn by Ygritte, Jon Snow 

and Tormund Giantsbane, Oslo 2014.  

B. Skinstad. CC3. 

https://commons.wikimedia.org/wiki/File:Game_
of_Thrones_Oslo_exhibition_2014_-
_Ygritte,_Jon_and_Tormund_costumes.jpg 
 



Example 2: Survival rates of characters in Game of Thrones. 
 
Death of male characters – causes 
 
name       time.hrs                                                               death_description 
Waymar Royce   0.10                                            Killed by a white walker in a forest 
Gared Tuttle   0.11                                      Decapitation by a white walker in a forest 
Will           0.19                          Decapitation by Ned Stark (legal execution) in a field 
Jon Snow      63.99                                                                            <NA> 
Bran Stark    63.99                                                                            <NA> 
Robb Stark    24.34      Shot by arrows and stabbed in the abdomen in the wedding hall at The Twins 
Rodrik Cassel 12.70                       Decapitated by Theon Greyjoy in Winterfell castle grounds 
Rickon Stark  49.15 Shot with an arrow through the thorax by Ramsay Bolton in field near Winterfell 
Eddard Stark   7.67              Decapitated by Ilyn Payne on the steps of the Great Sept of Baelor 
Jory Cassel    4.16          Stabbed in the eye by Jamie Lannister in the streets of King's Landing 
... 
 
 

  

Lystad, R. P. and B. T. Brown. 2018. Injury Epidemiology 5: 
44 



Example 2: Survival rates of characters in Game of Thrones. 
 
Survival curve, male characters all 8 seasons   



Example 2: Survival rates of characters in Game of Thrones. 

  

Times until death of male characters known to have died by the end of 8 seasons 
  



Example 2: Survival rates of characters in Game of Thrones. 
 
My goal was to fit a model to these data that would allow me to estimate death 
rates. I used the Weibull distribution, which is like the exponential distribution but 
allows fitting a wider diversity of shapes. It has two parameters, λ and k. If the 
shape parameter λ = 1, then the death rate is constant over time (i.e., has an 
exponential distribution). 

No simple formula will calculate the ML estimates of λ. What to do? 

I found a formula for the Weibull distribution online.  

I used R to calculate log-likelihoods for a range of possible values for λ and k to find 
the maximum likelihood values. 



Example 2: Survival rates of characters in Game of Thrones. 
 
Probability distribution for the time of death t 
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Log likelihood calculation using observed times of death ti 
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Using function in R 

Loglike <- sum(dweibull(x = time.hrs, shape = λ, scale = k, log = TRUE))  



Example 2: Survival rates of characters in Game of Thrones. 
 
Since there are two parameters I searched over a grid of the two. 
                                                   λ  
k         0.1       0.2       0.3       0.4       0.5       0.6       0.7       0.8       0.9         1 

6   -746.9967 -644.5018 -596.8230 -574.5869 -568.7294 -575.6231 -593.8734 -623.2852 -664.4679 -718.6863 

6.1 -747.0068 -644.5142 -596.7977 -574.4575 -568.4026 -574.9750 -592.7432 -621.4655 -661.6929 -714.6161 

6.2 -747.0172 -644.5281 -596.7769 -574.3381 -568.0948 -574.3598 -591.6659 -619.7272 -659.0390 -710.7217 

6.3 -747.0279 -644.5435 -596.7604 -574.2283 -567.8052 -573.7758 -590.6388 -618.0662 -656.5002 -706.9939 

6.4 -747.0388 -644.5603 -596.7481 -574.1276 -567.5329 -573.2215 -589.6595 -616.4787 -654.0705 -703.4243 

6.5 -747.0499 -644.5784 -596.7397 -574.0355 -567.2770 -572.6955 -588.7258 -614.9611 -651.7446 -700.0049 

6.6 -747.0612 -644.5978 -596.7349 -573.9518 -567.0368 -572.1964 -587.8354 -613.5101 -649.5175 -696.7283 

6.7 -747.0727 -644.6183 -596.7338 -573.8759 -566.8116 -571.7230 -586.9863 -612.1224 -647.3844 -693.5875 

6.8 -747.0844 -644.6399 -596.7359 -573.8075 -566.6005 -571.2740 -586.1766 -610.7952 -645.3408 -690.5759 

6.9 -747.0963 -644.6626 -596.7413 -573.7462 -566.4031 -570.8484 -585.4044 -609.5256 -643.3826 -687.6875 

7   -747.1083 -644.6863 -596.7497 -573.6918 -566.2186 -570.4452 -584.6682 -608.3110 -641.5057 -684.9163 

7.1 -747.1205 -644.7110 -596.7610 -573.6438 -566.0465 -570.0632 -583.9662 -607.1489 -639.7065 -682.2571 

7.2 -747.1329 -644.7366 -596.7751 -573.6021 -565.8863 -569.7017 -583.2969 -606.0370 -637.9815 -679.7045 

7.3 -747.1453 -644.7630 -596.7918 -573.5663 -565.7374 -569.3596 -582.6590 -604.9730 -636.3273 -677.2538 

7.4 -747.1579 -644.7903 -596.8110 -573.5362 -565.5993 -569.0361 -582.0510 -603.9548 -634.7408 -674.9005 

7.5 -747.1706 -644.8183 -596.8327 -573.5116 -565.4715 -568.7306 -581.4717 -602.9805 -633.2191 -672.6402 

7.6 -747.1835 -644.8471 -596.8566 -573.4921 -565.3537 -568.4421 -580.9198 -602.0482 -631.7593 -670.4689 

7.7 -747.1964 -644.8766 -596.8827 -573.4776 -565.2454 -568.1699 -580.3943 -601.1562 -630.3589 -668.3827 

7.8 -747.2094 -644.9068 -596.9109 -573.4678 -565.1463 -567.9135 -579.8939 -600.3026 -629.0152 -666.3779 
7.9 -747.2225 -644.9375 -596.9411 -573.4626 -565.0558 -567.6721 -579.4178 -599.4860 -627.7260 -664.4512 

 

  



Example 2: Survival rates of characters in Game of Thrones. 
The log-likelihood curve is now a surface 
Found maximum likelihood estimates:  λ̂ = 0.54, k̂ = 9.73 
  



Example 2: Survival rates of characters in Game of Thrones. 
Fit to survival curve of male characters who died. 
λ < 1 means that mortality not constant, it declines with time, as though defectives 
are eliminated quickly, and the remaining men live a bit longer.  



Example 2: Survival rates of characters in Game of Thrones. 
Likelihood-based 95% confidence region 
When estimating two parameters jointly, an approximate 95% confidence region 
along any one axis is obtained by the values corresponding to 2.996 log-likelihood 
units below the maximum 
 

 

2.996 is 𝜒0.05,2
2 /2 

 
You can see that the lower 
and upper limits of the 95% 
CI for λ is are 0.46 and 0.62.  



Example 2: Estimating speciation and extinction rates 
 
We can also calculate profile likelihood function: at each possible value for λ, find 
the maximum likelihood estimates of k, and plot the value on the profile log-
likelihood curve. This can be used to obtain a 95% confidence interval for λ:   
0.47 < λ <  0.61. 
 
The likelihood-based 95% confidence interval is an approximation based on χ2. It 
assumes that sample size is large.  
 
R has many tools for calculating maximum likelihood estimates and confidence 
intervals.  
 
The survival package in R can be used to fit models to survival curves that 
include censored data (data on individuals whose time of death is not known). 
These lead to similar estimates to the values estimated here.  



Log-likelihood ratio test 
 
Likelihood method to compare the fit of two models to data, full and reduced. 
 
Models must be nested, i.e., one of the models (reduced model) must have a subset 
of the terms present in the other model (full model). 
 
The LLRT allows a test of whether the “full model” fits the data statistically 
significantly better than a “reduced model”. 
 
Very general method – applies to any type of data, not necessarily normally 
distributed. 
 
P-value is approximate, with approximation improving with increasing sample size. 
  



Log-likelihood ratio test 
 

𝐺 = 2 ln
𝐿[full model | data]

𝐿[reduced model | data]
 

 
G is the log-likelihood ratio test statistic. 
 
Under H0, G is approximately χ2 distributed. 
 
Degrees of freedom for the χ2 are equal to the difference between the full model 
and the reduced model in the number of parameters estimated from the data. 
 
Very general method – applies to any data. 
 
The approximation to the χ2 distribution improves with increasing sample size.



Log-likelihood ratio test 
Example 1: Fatouros et al. (2005) carried out trials to determine whether the wasps 
can distinguish mated female butterflies from unmated females. In each trial, a 
single wasp was presented with two female cabbage white butterflies, one a virgin 
female, the other recently mated. Results: 23 successes out of n = 32 trials. 
 
Reduced model: 
H0: Wasps choose mated and unmated females  
       with equal probability (p = 0.5) 
 
Full model: 
HA: Wasps prefer one type of female over the  

       other (p  0.5) 
 
To fit the full model, p is estimated from the data. In this sense, the full model has 1 
more term than the reduced model.



Log-likelihood ratio test 
 

𝐺 = 2 ln
𝐿[full model | data]

𝐿[reduced model | data]
 

 
Applied to the wasp example: 
 

𝐺 = 2 ln
𝐿[𝑝 = �̂� = 0.72 | 23 of 32 chose mated female]

𝐿[𝑝 =  𝑝0 = 0.50| 23 of 32 chose mated female]
 

 
The full model uses the maximum likelihood estimate for the parameter (e.g., �̂� =
0.72 in the full model here).  
 
  



Log-likelihood ratio test  
 
From calculations using formulae shown earlier,  
 
𝐿[0.72 | 23 of 32 chose mated female] = 0.1553 
 
𝐿[0.50 | 23 of 32 chose mated female] = 0.00653 
 

𝐺 = 2 ln
0.1553

0.00653
= 6.336 

 

df = 1, so the critical value χ2 = 3.841 
 
Since 6.336 > 3.841, we reject H0. 



Wasp example: finale 
 
The chemical that the wasps use to distinguish mated from unmated females is 
benzyl cyanide, which the male butterfly passes to the female during mating. The 
compound is an “anti-aphrodisiac”, which makes the mated female less attractive 
to other male butterflies (Fatouros et al. 2005). 
 



Log-likelihood ratios are used in gene mapping 
At each marker along the chromosome two models are fitted to data on healthy 
and diseased individuals. The “reduced model” assumes that the frequency of 
healthy and diseased individuals is the same for every genotype. The “full model” 
assumes that genotype frequency at the marker differs between diseased and non-
diseased individuals. The log of the ratio of the likelihoods of the two models (full 
model likelihood divided by  
reduced model likelihood) is called  
the LOD score, and is a measure of  
the strength of evidence for a  
causative mutation near that marker.   
 
 
Evidence for a gene affecting  
schizo-affective disorder on  
human chromosome 1. 



Next discussion paper: 
 

Verhoeven et al (2005) Controlling false discovery rate when multiple testing. Oikos. 

 

Download from “Handouts” tab on course web site. 

 

Presenters:  Ali & _________ 

Moderators: Raisa & Ara 

 

  



Homework assignment 2 
 
Obtain data set from supervisor/lab and fit a linear model in R. 
 
Details on “Homework” page on course web site 
 
Due Friday, March 15 at 5 pm. 
 


