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What is a linear model 

A relationship between variables involving 

• a response variable Y  

• explanatory variables X1, X2, … 

• normal random errors with equal variance in the form 

Y = b0 + b1X1 + b2X2 + …  + error 

where b0, b1, b2, … are the parameters of the linear model 

 

  



What is a linear model 

 

For example: 

fit a mean to data:  Y = b0 

simple linear regression:  Y = b0 + b1X 

multiple regression:   Y = b0 + b1X1 + b2X2 + b3X3 + … 

quadratic regression:   Y = b0 + b1X1 + b2X2, where X2 = X1
2 

ANOVA:   Y = b0 + b1X1 + b2X2 + …  (I will explain) 

 

b0 is the intercept parameter in all the above examples.   



Other names for types of linear models: 

 

• Two-sample comparison of means 

• Multi-factor ANOVA 

• Analysis of covariance 

• Polynomial regression 

 

All can be written in the same form 

Y = b0 + b1X1 + b2X2 + …  



A linear model needn’t be a straight line 

 

For example, the quadratic equation is a linear model 

Y = b0 + b1X + b2X2 

 

 



So what 

 

“Linear models” unites many methods into a common framework that  

• Provides a common set of tools – lm() in R for fixed effects 

• Handles many different study designs 

• Equipped to estimate parameters and effect sizes – biological significance 

• Straightforward to use, even when there are multiple variables 

• Better handling of unbalanced designs than traditional ANOVA calculations 

 



Example 1: Simple linear regression 

Data: The average number of “dee” notes per alarm call by  
black-capped chickadees presented with a live, perched predator. 

Predator species Predator body 
mass (kg) 

“dee” 
notes per call 

Northern pygmy-owl 0.07 3.95 
Saw-whet owl 0.08 4.08 
American kestrel 0.12 2.75 
Merlin 0.19 3.03 
Short-eared owl 0.35 2.27 
Cooper’s hawk 0.45 3.16 
Prairie falcon 0.72 2.19 
Peregrine falcon 0.72 2.80 
Rough-legged hawk 0.99 1.33 
Red-tailed hawk 1.08 2.56 
Great gray owl 1.08 2.06 
Great horned owl 1.40 2.45 
Gyrfalcon 1.40 2.24 
Templeton, C. N., E. Greene, and K. Davis. 2005. 
Science 308: 1934-1937. 
 

  



Linear model for simple linear regression 
 

Y = b0 + b1X  

Parameters in this equation – these are the “effects”: 

• b0 : population intercept,  
b1 : population slope   

• b0 : estimate of intercept based on a random sample of Y’s for each X,  
b1 : estimate of slope based on the random sample 

 
In R the intercept is implicit and doesn’t need to be in the word statement of the 
model formula:  
                               

z <- lm(dees ~ mass)



Use summary() to get parameter estimates (please ignore the tests) 
 
Formula for the least squares estimate: Y = b0 + b1X 

summary(z) # produces the coefficients table (ignore the tests) 
         Estimate   Std. Error   t value   Pr(>|t|) 
(Intercept)  3.3731      0.2776   12.149   1.02e-07 *** 
mass      -1.0382      0.3402   -3.051    0.0110 *   

 

  



summary() What R does behind the scenes to estimate parameters 

R fits two “variables” to the data: mass and a column of 1’s.  
dees  dummy  mass  
3.95  1  0.07  
4.08  1  0.08  
2.75  1  0.12  
3.03  1  0.19  
2.27  1  0.35  
3.16 = b0 1 + b1  0.45 + residuals 
2.19  1  0.72  
2.80  1  0.72  
2.45  1  1.40  
1.33  1  0.99  
2.24  1  1.40  
2.56  1  1.08  
2.06  1  1.08  

 

See that for each point i, dees[i] = b0 (1) + b1 mass[i] + residual[i] 
e.g.:                                       3.95    = b0 (1) +  b1(1.07)  + residual[1st]  



summary()What R does behind the scenes to estimate parameters 

R uses least squares to fit a multiple regression to the X-variables (“dummy” and 
mass). The best estimates of b0 and b1 minimize the sum of squared residuals. 

dees  dummy  mass  
3.95  1  0.07  
4.08  1  0.08  
2.75  1  0.12  
3.03  1  0.19  
2.27  1  0.35  
3.16 = b0 1 + b1  0.45 + residuals 
2.19  1  0.72  
2.80  1  0.72  
2.45  1  1.40  
1.33  1  0.99  
2.24  1  1.40  
2.56  1  1.08  
2.06  1  1.08  

You can see the behind-the-scenes coding system in R as follows.  
     z <- lm(dees ~ mass) 
     model.matrix(z)  



Use summary() to get parameter estimates 

z <- lm(dees ~ mass)  

summary(z)  # yields the coefficients table with estimates b0 and b1  
(Please ignore the tests): 
         Estimate   Std. Error   t value   Pr(>|t|) 
(Intercept)  3.3731      0.2776   12.149   1.02e-07 *** 
mass      -1.0382      0.3402   -3.051    0.0110 *   

 

visreg(z, "mass") 

Produces a plot of the fitted model.  



Use anova() or Anova() to test hypothesis 

z <- lm(dees ~ mass) 
anova(z) 

yields the ANOVA table 
           Df  Sum Sq  Mean Sq  F value   Pr(>F)   
mass          1  3.1268   3.1268   9.3106  0.01102* 
Residuals  11  3.6942   0.3358   

Test of null hypothesis 
that slope β1 = 0 



R tests model terms using model comparison 

anova() tests each term or factor by comparing fits of two models to the data. 
Comparison is always between a reduced model and a full model. The reduced 
model contains a subset of terms contained in the full model. F-test is used to test 
whether the full model fits the data significantly better than the reduced model. 
 
Behind the scenes, this is how R tests the effect of predator body mass: 
z0 <- lm(dees ~ 1)    # fits reduced model (intercept only) 
z1 <- lm(dees ~ mass) # fits full model with intercept and slope for mass 
anova(z0,z1)          # compares fits with F test, yielding: 
 
   Res. Df     RSS  Df  Sum of Sq       F Pr(>F)   
1 [reduced] 12  6.8210                                   
2 [full] 11  3.6942   1     3.1268  9.3106  0.01102 



Visually, anova(z0,z1) makes the following comparison: 

The test of predator body mass involves a comparison of these two models: 

             dees ~ 1                dees ~ mass 
 
    reduced model (fits only an intercept)        full model (intercept and slope) 
 
  



Example 2: Multiple regression 

Data: Effects of latitude and elevation on ant species richness. n = 22 forest plots. 

Gotelli, N.J. & Ellison, A.M. (2002b). Biogeography at a regional scale: determinants 
of ant species density in bogs and forests of New England. Ecology, 83, 1604–1609. 

log(nspecies) = b0 + b1(latitude) + b2(elevation) + b3(latitude × elevation) 
 

Parameters in this model 

• b0 : intercept 
• b1 : slope for latitude 

• b2 : slope for elevation 

• b3 : slope for interaction 
(NB: sample size too small to fit so many parameters,  
 but for this example let’s keep going anyway)  



Example 2: Multiple regression 
log(nsp)  dummy  latitude  elevation  lat*elev  

1.8  1  41.97  389  16326.33  
2.8  1  42.00  8  336.00  
2.9  1  42.03  152  6388.56  
2.8  1  42.05  1  42.05  
2.2  1  42.05  210  8830.50  
2.7  1  42.17  78  3289.26  
1.9  1  42.19  47  1982.93  
2.5  1  42.23  491  20734.93  
2.6  1  42.27  121  5114.67  
2.2 = b0 1 + b1  42.31 + b2 95 + b3 4019.45 + residuals 
2.3  1  42.56  274  11661.44  
2.3  1  42.57  335  14260.95  
1.4  1  42.58  543  23120.94  
1.6  1  42.69  323  13788.87  
1.9  1  43.33  158  6846.14  
1.9  1  44.06  313  13790.78  
1.4  1  44.29  468  20727.72  
1.8  1  44.33  362  16047.46  
1.8  1  44.50  236  10502.00  
2.1  1  44.55  30  1336.50  
1.8  1  44.76  353  15800.28  
1.8  1  44.95  133  5978.35  



Use summary() to get parameter estimates 

z <- lm(log(nspecies) ~ latitude * elevation)       

summary(z) # yields the estimates b0, b1, b2, b3  (Please ignore the tests): 
 
 Estimate Std.Error t value Pr(>|t|)  
(Intercept) 12.6271 5.0457 2.503 0.0222  
latitude -0.2369 0.1181 -2.006 0.0601  
elevation -0.0076 0.0187 -0.406 0.6894  
latitude:elevation 0.0001 0.0004 0.331 0.7444  
	  



Use anova() or Anova() to test hypothesis 

z <- lm(log(nspecies) ~ latitude * elevation)       
anova(z) 

 
yields the ANOVA table 
 

 Df Sum Sq Mean Sq F Pr(>F)  
latitude 1 1.44425 1.44425 14.5030 0.0013 ** 
elevation 1 1.07581 1.07581 10.8032 0.0041 ** 
latitude:elevation 1 0.01091 0.01091 0.1096 0.7444  
Residuals 18 1.79249 0.09958    

 
Remember: anova() tests each term or factor by comparing fits of two models 
to the data. Comparison is always between a reduced model and a full model. The 
full model contains the term of interest and the reduced model leaves it out.	  



How does R know what full and reduced models to use? 

By default anova() tests model terms sequentially (“Type 1 SS”) 

z <- lm(log(nspecies) ~ latitude * elevation)       
anova(z) 

 

By default, R tests all terms following its own program of action: 

1. anova(z) tests all model terms sequentially (“Type 1 SS”) in the order you 
provided them in the formula. 

2. anova(z) respects hierarchy: intercept tested first, then main effects, then 
interactions. To test an interaction between 2 or more variables, anova(z) always 
uses a reduced model that includes all the main effects of those variables. 	  



With sequential testing, order of terms in the model formula matters 

z <- lm(log(nspecies) ~ latitude * elevation)       
anova(z) 
 

 Df Sum Sq Mean Sq F Pr(>F)  
latitude 1 1.44425 1.44425 14.5030 0.0013 ** 
elevation 1 1.07581 1.07581 10.8032 0.0041 ** 
latitude:elevation 1 0.01091 0.01091 0.1096 0.7444  
Residuals 18 1.79249 0.09958    

 

 
Term Reduced model Full model Improvement in SS resid 
latitude intercept  Intercept + latitude 1.44425 
elevation Intercept + latitude Intercept + latitude + elevation 1.07581 
latitude:elevation Intercept + latitude + elevation Intercept + latitude * elevation 0.01091 
	  



With sequential testing, order of terms in the model formula matters 

z <- lm(log(nspecies) ~ elevation * latitude)       
anova(z) 
 

 Df Sum Sq Mean Sq F value Pr(>F)  
elevation 1 1.52670 1.52670 15.3309 0.0010 ** 
latitude 1 0.99336 0.99336 9.9752 0.0054 ** 
latitude:elevation 1 0.01091 0.01091 0.1096 0.7444  
Residuals 18 1.79249 0.09958    

 

Term Reduced model Full model Improvement in SS resid 
elevation intercept  Intercept + elevation 1.52670 
latitude Intercept + elevation Intercept + elevation + latitude  0.99336 
latitude:elevation Intercept + elevation + latitude Intercept + elevation * latitude 0.01091 
 
	  



Anova() in the car package can test terms marginally (“Type 3 SS”) 

library(car) 
z <- lm(log(nspecies) ~ latitude * elevation)       
Anova(z, type = 3) # type 2 is the default 

 Df Sum Sq F value Pr(>F)  
latitude 1 0.40078 4.0246 0.0601 . 
elevation 1 0.01643 0.1650 0.6894  
latitude:elevation 1 0.01091 0.1096 0.7444  
Residuals 18 1.79249    

Here, order of terms in model formula doesn’t matter. Hierarchy is not respected. 
The improvement in SS residual for a given term in the full model is measured 
against a reduced model that contains all other terms, including any interactions. 
Hence, marginal testing also called “drop 1” testing. 

Type 3 SS is the default in SAS, JMP and some other computer packages.  



Warning: The lure of model simplification 

The interaction term in the model was not significant. Can we drop it and refit? 

“models should be pared down until they are minimal adequate”  
     -- Crawley 2007, The R book, p325 

• The temptation is strong to drop non-significant terms from models, to find a 
“minimum adequate model” or to provide more power to test remaining effects. 

• Dropping a term when P > 0.05 implies that you’ve accepted a null hypothesis as 
true. Is this a good idea? Recalculated P-values in revised model become 
exploratory. 

• Later, we will cover the topic of model selection – how to choose the best model 
using explicit criteria for what constitutes “best.”  

• In the case of experiments, a good general rule is that analysis should follow 
design. Shouldn’t a factor in your experiment also be in your linear model?  



Example 3: Single-factor ANOVA 

Data: the percentage of time that male mice given an injection to cause mild pain 
spent “stretching” in different familiar-companion treatments. 
 
 
 
 
 
 
 
 
 
 
Langford, D. J. et al., 2006.  Science 312: 1967-1970 



ANOVA is fundamentally the same as linear regression 

There’s a response variable, a constant, an explanatory variable. 

z <- lm(stretching ~ treatment) 

 

The only difference is that now the explanatory variable is categorical. 

 



Use summary() to get parameter estimates (ignore the tests) 

z <- lm(stretching ~ treatment) 

Y = b0 + b1X1 + b2X2 # Fits this linear model. What are b0, b1, b2 ?  I will explain. 

summary(z)   # Yields the estimates b0, b1, b2  
 

             Estimate  Std. Error  t value  Pr(>|t|)     
(Intercept) 37.194 4.220 8.814 8.06e-11*** 
treatcompanion -1.825 6.411 -0.285 0.77741 
treatcompan.inj 20.856 6.560 3.179 0.00289** 
 

What are b0, b1, b2 ?  I will explain. 

To answer, let’s look at the anova() table first.



Use anova() to test hypotheses  

anova(z) # Produces the ANOVA table 
 

           Df  Sum Sq  Mean Sq  F   Pr(>F)   
Treatment          2    4040.9 2020.5 6.6736 0.003216 ** 
Residuals  39  11807.4   302.8   

As before, each test in anova() compares the fit of TWO models: 
           stretching ~ 1     stretching ~ treatment 
  



Use visreg() to visualize model fits 

visreg(z, “treatment”) 
  



Use emmeans() to get fitted means under the specific model 

library(emmeans) 
z <- lm(stretching ~ treatment) 
emmeans(z, “treatment”) 
 

treatment emmean SE df lower.CL upper.CL 
isolated 37.19412 4.220082 39 28.65820 45.73004 
companion.notinj 35.36923 4.825848 39 25.60803 45.13043 
companion.inj 58.05000 5.022902 39 47.89022 68.20978 

 
The SE’s and confidence intervals are not the same as those you would calculate 
based on the data for each group separately, because they are based on the error 
(residual) mean square for the model (here, this is why df = 39 for each estimate). 
 
Note: emmeans() yields the predicted or marginal means according to the model. These predicted means are 
not necessarily the same as the individual group means. It depends on what terms are in the model.  



What the summary() coefficients mean 

 

z <- lm(stretching ~ treat) 

summary(z)   # yields the following parameter estimates: 
 

             Estimate  Std. Error  t value  Pr(>|t|)     
(Intercept) 37.194 4.220 8.814 8.06e-11*** 
treatcompanion -1.825 6.411 -0.285 0.77741 
treatcompan.inj 20.856 6.560 3.179 0.00289** 



What the summary() coefficients mean 

Behind the scenes, R codes the 3 groups of the categorical variable with indicator 
variables that indicate group membership. 

stretching dummy treatisolation treatcompanion treatcompan.inj 
64.4 1 1 0 0 
46.7 1 1 0 0 
38.9 1 1 0 0 
65.6 1 1 0 0 
…     

56.7 1 0 1 0 
51.1 1 0 1 0 
50.0 1 0 1 0 
51.1 1 0 1 0 
…     

36.7 1 0 0 1 
81.1 1 0 0 1 
66.7 1 0 0 1 
66.7 1 0 0 1 

To analyze, R leaves out the indicator representing the first factor level to avoid a 
particular form of redundancy (a sum of three of the columns exactly equals the 
fourth). Use model.matrix(z) to see how indicators are coded.  



Linear model for the indicator variables 
stretching  dummy  treatcompanion  treatcompan.inj  

64.4  1  0  0  
46.7  1  0  0  
38.9  1  0  0  
65.6  1  0  0  
…        

56.7  1  1  0  
51.1 = b0 1 + b1 1 + b2 0 + residuals 
50.0  1  1  0  
51.1  1  1  0  
…        

36.7  1  0  1  
81.1  1  0  1  
66.7  1  0  1  
66.7  1  0  1  

 
stretching  = b0(1) + b1(0) + b2(0)  + residual    (subjects in isolation treatment) 
stretching  = b0(1) + b1(1) + b2(0)  + residual    (subjects in companion treatment) 
stretching  = b0(1) + b1(0) + b2(1)  + residual    (subjects in compan.inj treatment)



What the summary() coefficients mean 

In other words, the linear model being fitted is: 

 
stretching = b0         + residual    (subjects in isolation group) 

stretching = b0 + b1 + residual     (subjects in companion group) 

stretching = b0 + b2 + residual     (subjects in compan.inj group) 

 
Stare at this long enough and you’ll realize that: 
 
b0 is the mean of the isolated (control) group  

b1 is the difference between companion and control groups 

b2 is the difference between compan.inj and control groups 
 
Other codings are possible, in which case the interpretations of the parameters will change. Read 
the fine print. R’s 0/1 scheme is relatively straightforward.  



What the summary() coefficients mean 
b0 estimates the mean of the isolated (control) group  
b1 estimates the difference between companion and control groups 
b2 estimates the difference between compan.inj and control groups 
 
             Estimate    Std. Error     t value  Pr(>|t|)     
(Intercept) 37.194 4.220 8.814 8.06e-11*** 
treatcompanion -1.825 6.411 -0.285 0.77741 
treatcompan.inj 20.856 6.560 3.179 0.00289** 
               | 
            P-values are incorrect except 
               for planned comparisons 

               
  



How does anova() test a categorical term? 

To test a categorical factor/term, the reduced model drops all columns coding for 
that factor 
 
In this example, the three levels of treatment are coded by two dummy indicator 
variables, both of which are dropped in the reduced model. 
 
z0 <- lm(percent.stretching ~ 1)         # reduced model (1 column) 
z1 <- lm(percent.stretching ~ treatment) # full model (3 columns) 
anova(z0,z1) 

 
 Res.Df RSS Df Sum.of.Sq F Pr(>F)  
1 [reduced] 41 15848      
2 [full] 39 11807 2 4040.9 6.6736 0.003216 ** 
  



Summary of Example 3 so far 
 
• Linear models can fit categorical variables too. 

• Use visreg() to visualize model fits.  

• Use emmeans() to estimate predicted group means. 

• Use summary() for parameter estimation, if useful. To interpret the 
estimates, it is useful to know about how R handles categorical variables behind 
the scenes (0/1 indicator variables). 

• Order your categories well (e.g., control group first) to maximize the usefulness 
of the parameter estimates from the fitted model (e.g., estimates of differences 
between each treatment group and the control group). 

• Use anova() or Anova() for hypothesis testing (P values, sums of squares). 

• Use plot(z) to check assumptions (workshop) 



Example 4: Models with both numeric and categorical variables (ANCOVA) 

Brain and body sizes of Neanderthal specimens ( ) and early modern humans ( ). 
Ruff et al 1977).  

Do they (we) have different brain sizes, after accounting for differences in body 
size? Answering this is easiest if we can assume the model on the left is correct.  
      brain ~ mass + species      brain ~ mass + species 
                                      + mass:species  



anova() tests terms sequentially 

z <- lm(brain ~ mass * species) 
anova(z) 
 
               Df   Sum Sq  Mean Sq F value    Pr(>F)     
mass            1 0.102528 0.102528 23.1465 2.835e-05 *** 
species         1 0.027553 0.027553  6.2203    0.0175 *   
mass:species    1 0.004845 0.004845  1.0938    0.3028     
Residuals      35 0.155033 0.004430                       
 
Interaction is not significant, but equal slopes remains an assumption not a 
conclusion (one not contradicted by the data).  

	  



summary() obtains the parameter estimates 

Model with no interaction (assumes equal slopes) 
z <- lm(brain ~ mass + species) 
summary(z) 
 Estimate Std. Error Interpretation of parameters estimated   
(Intercept) 5.22321 0.38862 Intercept for species 1 (recent humans)   
lnmass 0.49632 0.09173 Slope for species 1 (same slope fit to both)   
species1 -0.03514 0.01411 Difference between intercepts (i.e., size-corrected 

difference) 
  

  



Size-correction is valid only when range of X-values is similar in all groups 

Although our goal is to “correct” for variation in X in order to comparing Y among 
groups, X is not the cause of Y. Hence, there is “regression to the mean”.



Problems arise when the range of X-values is not the same among groups 

Differences in Y might persist even after “correcting” for differences in X.  

Major axis regression methods are more suitable instead (available in R!).



Core assumptions of linear models 

• Normally-distributed errors 

• Equal variance of residuals in all groups 

• Independent errors (random sample; no pseudoreplication) 

• Continuous covariates have the same range of values in all groups 

• Sphericity: the variances of the differences between all pairs of factor levels are 
equal (typically violated when linear model includes time as factor (more next 
week). 

Use plot(z) to assess departures from the assumptions of normality and equal 
variance (workshop this week). 

Linear models are reasonably robust to departures from assumptions 1 and 2, 
especially if sample size is large and balanced. However, outliers can cause 
problems. 



Related topics 

What if your residuals aren’t normal because of outliers?  

• Robust regression methods (rlm) 

What if response data are binary or discrete? 

• Generalized linear models (glm) 

What if there are random effects? 

• Linear mixed effects models (lme) 

What if residuals are not independent because of autocorrelation or phylogeny? 

• General least squares (gls), mixed effects models (lme),  
generalized estimating equations (geeglm) 



Discussion paper: 

Kelly and Price (2005). Correcting for regression to the mean in behavior and 
ecology. American Naturalist 166: 700-707. 

 

Download from “handouts” tab on course web site. 

Presenters: _________ & _________ 

Moderators: Diego & Finola 

  



A word about planned vs unplanned comparisons 

Unplanned (“post hoc”) comparisons: 
• Multiple comparisons among means after ANOVA done. 
• Used to find which pairs of means are statistically significantly different. 
• A kind of data dredging (i.e., no plan). 
• Incorporates special protection against high false positive rate. 
• P-values in summary() table are not protected, so can’t use them. 

 
Planned (“a priori”) comparisons:  
• Comparisons between group means that were decided when the experiment 

was designed (not after the data were in). 
• For example, compare a key treatment against the control. 
• Must be few in number to avoid inflating false positive rate. 
• P-values in summary() can be used for planned comparisons. 
• Other types of planned contrasts are also possible (emmeans package) 


