
Evolution in Finite Populations

Up until now, we have treated populations as being
infinitely large.

For example, we have used equations to determine
p[t+1] assuming that each type produces EXACTLY as
many offspring as predicted by their fitnesses.

In any finite population, however, individuals may have
more or fewer offspring than expected, simply by chance.

The chance increases or decreases in the frequency
of an allele in a finite population are called random
genetic drift.

How does random genetic drift affect evolution in the
absence of selection?

How does random genetic drift affect evolution in the
presence of selection?
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Random Genetic Drift in the Absence of Selection

Example: A Birth-Death Model.

Imagine a population of 1000 haploid individuals, half
of which are A and half a.

At any point in time, any individual may die. It is then
replaced by the reproduction of another individual
chosen at random from the population.

At first, when the allele frequency remains near p=1/2:

• There is a 50% chance that A dies and

- a 50% chance that it is replaced by A
 No change in number of A alleles.

- a 50% chance that it is replaced by a
 Number of A alleles decreases by one.

• There is a 50% chance that a dies and

- a 50% chance that it is replaced by A
 Number of A alleles increases by one.

- a 50% chance that it is replaced by a
 No change in number of A alleles.



In this example, A and a are equally fit; they have an
equal chance of dying and an equal chance of
reproducing.

The class has simulated this model.

Birth-death events where no change in number of
A occurred were ignored.

Of the birth-death events leading to a change in
the number of A individuals, 50% (heads) led to an
increase by one and 50% (tails) led to a decrease
by one.

Consequently, the frequency of A varied over time
from 1/2 by random drift.

(What would soon go wrong with our "simulation"?)



A more commonly used model of random genetic drift
is called the Wright-Fisher Model, which assumes:

• A population of constant size where every
individual reproduces at the same time.

• Each offspring allele is descended from a parent
allele chosen at random from the previous generation.

Imagine labelling each allele in a population at some
point in time. These "alleles" will drift up and down in
frequency, until eventually only one remains.

Any one of these alleles has an equal chance of being
the "lucky" allele that fixes.

In a haploid population of size 5, what is the chance
that allele #1 fixes?

In a haploid population of size N, what is the chance
that any particular allele copy fixes?

If there are n copies of allele A and N-n copies of allele
a in a haploid population, what is the probability that
allele A eventually fixes?



 In the absence of mutation and selection, 
allele frequencies drift up and down in frequency
until, eventually, one allele becomes fixed.
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We have been discussing the Wright-Fisher process
for a haploid population, but the same method works
for a diploid population as long as alleles within an
individual are randomly sampled from a gamete pool.

In a diploid population with N individuals, there will be
2N alleles.

What is the chance that any particular allele copy fixes?

If there are n copies of allele A and 2N-n copies of
allele a in a diploid population, what is the probability
that allele A eventually fixes?



In the example shown above, it took nine generations
for the third allele to fix.

In general, the AVERAGE amount of time it will take
for a single allele to fix within a population is twice the
number of alleles within a population:

 2N generations with N haploid individuals

 4N generations with N diploid individuals

ASIDE: The time to fixation of an allele A is
approximately the same whenever A is initially rare
(small p[0]).

For example, in your PopBio assignment, p=0.1 and
N=10 (diploid population), what fraction of the time
should A fix? 

 A to fix when it does fix? How long should it take for



If it takes, on average, 4N generations for a single
allele to spread to fixation within a diploid population
(forwards in time), how long ago in the past, on
average, must we look before all the alleles currently
present in the population shared a common ancestor?

[This is called the coalescence time.]

We can look at this process forward or backwards in time!
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Random genetic drift causes, on average, a loss of
genetic variation within a population.

This is obviously true in the long-term, since a
population eventually drifts to fixation on one allele.

For example, Buri (1956) examined 107 Drosophila
populations that each started with 16 heterozygotes
for a brown eye mutation (bw):

(Reported in Hartl and Clark, 1989.)



The loss of variability can be measured by changes in
the "Expected Homozygosity" (f) of a population.

Expected Homozygosity (f) = The probability that
two alleles drawn at random are the same allele.

For instance, with two alleles at a locus, the expected
homozygosity will initially equal:

f[0] = p2[0] + q2[0],

since p2[0] is the probability that both the first and the

second allele chosen at random are A and q2[0] is the
probability that both the first and the second allele are a.

In generation t, when two offspring alleles are chosen
from the population at random, there are two possibilities:
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(1) What is the probability that both offspring alleles
come from the same parental allele in a diploid
population with 2N alleles?

(2) What is the probability that both offspring alleles
come from different parental allele in a diploid
population with 2N alleles?

In the first case, homozygosity becomes one (the two
alleles ARE same allele in the previous generation).

In the second case, the two offspring alleles will be the
same allele if they are descended from parents with
the same allele, which is given by the expected
homozygosity in the previous generation, f[t-1].

f[t] = 1/(2N) + (1-1/(2N)) f[t-1]

The smaller the population, the more likely that two
alleles will be the same just because they had the
same parent.



 The expected homozygosity rises in all finite
populations, but rises fastest in small populations.

As expected homozygosity rises, the amount of
genetic variation within the population declines. The
amount of genetic variation is measured by:

Expected Heterozygosity (H) = The probability that
two alleles drawn at random are different alleles: H=1-f.

In generation t,

H[t] = 1 - f[t]

= 1 - 1/(2N) - (1-1/(2N)) f[t-1]

= (1-1/(2N)) H[t-1]

 The expected heterozygosity within a diploid
population declines at a rate 1/(2N) each generation.
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REMEMBER: These are only averages. 
In any particular population, heterozygosity 
will rise and fall over time, eventually reaching zero.
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Random Genetic Drift with Mutation

Even in small populations, heterozygosity does not
disappear forever, since mutations continually arise.

Two alleles drawn at random are NOT the same
if either mutates to a new allele.

Therefore, for two alleles drawn at random to be
the same, they must both be non-mutant:

f[t] =   1/(2N) + (1-1/(2N)) f[t-1]  (1- )2

where  is the mutation rate to new neutral alleles.

At equilibrium, the loss of genetic variability by drift
and the gain by mutation counter-balance, so that on
average:

f* = 1/(4 N  + 1)

H* = 4 N /(4 N  + 1)

These are only averages. Any particular locus may or
may not be fixed.

[CHALLENGE:  
Derive these]

( )



Not only do new mutations contribute to the amount of
heterozygosity within a population, but occasionally
these new mutations rise to fix within a population.

This creates a constant turn-over in the alleles carried
by a population, even in the absence of selection.

In a diploid population, how many new mutations
appear each generation?

For any one of these mutations, what is the probability
that it will be the "lucky" allele from which the entire
population will eventually descend?

 The turn-over of neutral alleles will occur at a
rate equal to 2N /(2N) = !

This result does not depend on the population size.

 The number of substitutions can be used as a
MOLECULAR CLOCK, indicating how much time has
passed.



Kimura (1983) showed that this prediction matched
the inferred numbers of amino acid substitutions:

Comparing  -globin genes from various vertebrates,

Motoo Kimura derived this
result and used it to predict
that the number of DNA
substitutions that occur
within the genome should
rise as a linear function of time.

Time since separation (in millions of years)
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Random Genetic Drift with Selection

Would we expect a similar rate of evolution if selection
were also acting?

Haldane (1927) showed that, in a large population, the
probability of a new mutant allele fixing is 2s, where s
is its selective advantage.

Kimura noted that the rate of fixation of new adaptive
mutants that arise at rate    would therefore equal 

*(2s) in a diploid population.

This leads to a prediction: A gene sequence should
evolve at a constant rate over a range of population
sizes ONLY if very little selection is acting on that
sequence.

2N



When would you expect the fate of an allele to depend
more on random genetic drift than on selection?

When would you expect the fate of an allele to depend
more on selection than on random genetic drift?

 4Ns determines the relative roles of selection
(important when 4Ns>>1) and random genetic drift
(important when 4Ns<<1).
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