
 

Question 2 [20 points per page]: The SIR model is a classic model for the spread of disease, such as 
COVID-19. Here, we track the proportion of a population that is susceptible (S), infected (I), or resistant 
(R), which sum to one, and use this model to obtain insights about disease spread.  

(a) When the population was mainly susceptible (as was true in BC before Omicron), the number of 
susceptible individuals, S, could be treated as a constant (a fixed parameter), because infections were 
few relative to the total size of the population. Treating 𝛽, 𝑆, 𝜅, 𝛼 as fixed positive constants, the above 
equation !"

!#
= 𝛽	𝑆	𝐼 − 	𝛼	𝐼 − 	𝜅	𝐼 can be written in the form !"

!#
= 𝑟	𝐼. 

[Tick one from each column] Which of the following describes the equation, !"
!#
= 𝑟	𝐼?  

TICK ONE OF: TICK ONE OF: TICK ONE OF: 
X	Equivalent to exponential growth model X Differential equation X Continuous-time model 
☐	Equivalent to logistic model ☐ Recursion equation ☐ Discrete-time model 
☐ Equivalent to haploid selection model ☐ Difference equation ☐ Not enough information given 
☐ Equivalent to diploid selection model 

(b) Fill in the following blanks, relating the original equation !"
!#
= 𝛽	𝑆	𝐼 − 	𝛼	𝐼 − 	𝜅	𝐼 to !"

!#
= 𝑟	𝐼. We 

can write r = _	𝛽	𝑆 − 	𝛼 − 	𝜅_, in terms of the original parameters 𝛽, 𝑆, 𝜅, 𝛼. For the number of 
infections to grow over time, we need r__>__0 [choose >, <, or =].  This tells us that the disease will 
spread as long as the proportion of susceptibles in the population satisfies S >_	(𝛼 + 	𝜅)/𝛽 ___ [write as 
a function of the other parameters, 𝛽, 𝜅, 𝛼].  

 

(c) At this point in the pandemic, many people have had prior exposure to the virus, either through 
vaccination or past infection, building up immunity. This resistance wanes over time, however, at rate 𝛿. 
The proportion of susceptible individuals is expected to change according to !$

!#
= 𝛿	𝑅 − 𝛽	𝑆	𝐼 with 

waning. Add an arrow describing this waning to the figure above; write the total flow rate by the 
arrow. If the flow occurs at a per capita rate, then multiply it by the appropriate variable. Add a solid 
arrow from R to S with 𝛿	𝑅 as the total flow rate over that arrow. 
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(d) In a population where most individuals are resistant (R ~ 1) and few are infected (I ~ 0), the above 
differential equation simplifies to  !$

!#
= 𝛿. You think that the general solution is 𝑆(𝑡) = 𝛿	𝑡 + 𝑆(0), 

where 𝑆% is the proportion of susceptible individuals at time 0. Verify that this general solution satisfies 
the differential equation !$

!#
= 𝛿 (only partial credit will be given for other checks).   

Taking the derivative of 𝑆(𝑡) = 𝛿	𝑡 + 𝑆% with respect to t gives: !$
!#
= !('	#)$!)

!#
 = !('	#)

!#
+ !($!)

!#
.  Since 𝑆% 

is a constant in the model (the initial proportion of susceptibles), !($!)
!#

= 0 and  !$
!#
= 𝛿 !#

!#
= 𝛿. 

(e) Accounting for waning by using the solution in part (d), we expect the infected class to change over 
time according to  !"

!#
= 𝛽	(𝛿	𝑡 + 𝑆%)	𝐼 − 	𝛼	𝐼 − 	𝜅	𝐼.  Begin a separation of variables by rewriting this 

differential equation with the variables separated.   
 

4 									
1
𝐼 																																		 	𝑑𝐼		 = 4 				𝛽	(𝛿	𝑡 + 𝑆%) − 	𝛼 − 	𝜅												 			𝑑𝑡						 

 
(f) Integrate both sides and solve for the proportion of infected individuals, I(t), at time t, given an initial 
number 𝐼% at time 0.  
 

ln(𝐼) = 	
1
2𝛽	𝛿	𝑡

+ + (𝛽	𝑆% − 	𝛼 − 	𝜅)	𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	 

solving at time t=0 for the constant of integration: ln(𝐼%	) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and exponentiation both sides: 

𝐼 = exp B
1
2𝛽	𝛿	𝑡

+ + (𝛽	𝑆% − 	𝛼 − 	𝜅)	𝑡 + ln(𝐼%	)C 

𝐼 = 𝑒
,
+-	'	#

"
𝑒(-	$!.	/.	0)	#𝐼% 

(g) Assuming that the population was initially so resistant that the disease could not spread, at what time, 
t, do you expect the disease to start spreading due to waning immunity? You can answer this question by 
determining the time at which !"

!#
 becomes positive. 

Note that !"
!#
= 𝛽	(𝛿	𝑡 + 𝑆%)	𝐼 − 	𝛼	𝐼 − 	𝜅	𝐼 if 𝑆% is too small, then I will decline over time at t=0, because 

there are too few people to infect (no matter what the initial value of 𝐼).  !"
!#

 will then become positive 
when 𝛽	(𝛿	𝑡 + 𝑆%)𝐼 − 	𝛼	𝐼 − 	𝜅	𝐼 > 0, that is, 𝑡 = (𝛼 + 	𝜅 − 𝛽	𝑆%)/(𝛿	𝛽) 
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(h) You use maxima to find the general solution to the equation, !"
!#
= 𝛽	(𝛿	𝑡 + 𝑆%)	𝐼 − 	𝛼	𝐼 − 	𝜅	𝐼, but 

you have three errors in your code.  Circle and correct the three errors. [𝛿𝑡 needs a multiplication sign 
before the t; “exp_model” should be “sir_model”, and −	𝛼	𝐼 − 	𝜅	𝐼 should not be written as −	(𝛼	𝐼 −
	𝜅	𝐼) as this changes the sign of the last term.] 

 

(i) Based on your general solution, you use maxima to plot the proportion of the population who is 
infected, starting with 1% infected individuals and no susceptible individuals: 

 

Circle one (True or False) for each of the following statements based on the above results and plot. 
Assume no other variable or parameter is changed besides the one discussed.  

• True or False: The proportion of infected individuals would decline regardless of the initial 
proportion of infected individuals, as long as there are some (𝐼% > 0). Because there are no 
susceptibles 

• True or False: The proportion of infected individuals would decline regardless of the initial 
proportion of susceptible individuals, as long as there are some (𝑆% > 0). If there were enough 
susceptibles initially, then infections could rise initially 

• True or False: The reason that the proportion of infected individuals declines initially is because 
there are too few infected individuals at first in the population (𝐼% is too small). There are too few 
susceptibles 

• True or False: The reason that the proportion of infected individuals eventually rises is because 
enough individuals have lost immunity (moving from the resistant R(t) class to the susceptible 
class S(t)), so that the disease has a positive growth rate (r > 0, as defined in parts (a) and (b)). 


