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Preface

This is first and foremost a book about evolutionary biology. Though it is filled
with equations, it is not an applied mathematics book, nor is it a population
genetics text, though that subject dominates half of the chapters. Rather, it is
a book about the mechanics of evolution, as illuminated by mathematics, and
about the conceptual structure of evolutionary theory. I hope to convey the
fact that evolutionary theory is not just a collection of separately constructed
models, but is a unified subject in which all of the major results are related
to a few basic biological and mathematical principles.

The audience [ had in mind while writing the book is made up primarily
of graduate students in biology. These students know there is a body of for-
mal evolutionary theory and are familiar with some of its conclusions, but
often have never been shown where these conclusions originate from. I also
hope that the book will be of interest to researchers in related fields, as well as
to biology undergraduates who are frustrated with the fact that they learn cal-
culus and then rarely use it in their courses. In short, my intended audience
is composed of readers who know a bit of evolutionary biology and a bit of
mathematics. My goal is to take these readers deep into the subject of evolu-
tionary biology, and hopefully expand both their biological and mathemati-
cal knowledge in the process.

The single most difficult thing about writing a book that covers this range
of material is deciding what to leave out. Most of the topics thatI cover have
entire books devoted exclusively to them. Giving a comprehensive treatment
of each subject would make the book prohibitively long (for both author and
readers) and would detract from the goal of uniting different fields and em-
phasizing the biological insights that they yield.
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In deciding what to include and what to leave out, I chose to focus on
those results that I feel have the greatest power to influence our thinking
about how evolution works. By showing in detail how these central results
are derived, I hope to convey some feel for how the different branches of evo-
lutionary theory are constructed and connected. .

Because I chose subjects based on their significance to understanding evo-
lution rather than on the kind of mathematics that they require, the level of
mathematical sophistication varies throughout the book. Some sections use
only basic algebra and a bit of calculus while others, sometimes in the same
chapter, use more sophisticated methods. I assume only that the reader is
familiar with basic calculus. Beyond this, I strive to explain more advanced
mathematical techniques when they arise or in the Appendices.

Acknowledgments

This book is based on a course that I have taught for a number of years. I am
grateful to all of the students who, through challenging and insightful ques-
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subject more deeply.
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written include Jack Cohen, Paul Magwene, Monty Slatkin, Mike Rosenzweig,
and Guinter Wagner. David Houle and Mark Kirkpatrick read parts of the
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tation.
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working hard to keep the book on schedule while dealing with my constant -
underestimates of how long it would take me to complete each part. In par-
ticular I would like to thank Sydney Carroll, who worked overtime to pull the
book together.

Most importantly, I would never have completed this book without the
continuing encouragement and support of my wife, Melissa. When the proj-
ect seemed daunting, she reminded me why it was worthwhile and inspired.
me to continue. : : '
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Introduction

All fields of science use mathematical models that allow us to draw accu-
rate conclusions from empirical work as well as to address hypothetical
“what if” questions. A few scientific fields go a step further. These sciences
possess mathernatical theory that is more than just a collection of special case
models, it is fundamental to a basic understanding of the subject. In fields
built upon this sort of theoretical foundation, discovery is often driven by
mathematical arguments, followed by empirical tests. When a particular
model fails an empirical test, researchers turn to the mathematical theory to
understand why.

Only a few branches of science have this sort of formal mathematical foun-
dation, but it is not surprising that evolutionary biology is one of them. When
we look at the roots of evolutionary biology, we can see why this is so. The
mechanism of evolution proposed by Darwin and Wallace, though not
phrased mathematically, has a feeling of universality to it. The logic of natu-
ral selection is so clear and the premises so well founded, that critics—who
are unable to find any logical flaws—are reduced to arguing that it has no
empirical content. This is of course not true. The fact that offspring resemble
their parents is an empirical observation, but the empirical basis of the theory
is so well supported that’it seems to blend into the logic of the arguments.

In this respect, evolutionary biology is unlike most biological sciences,
where fundamental discoveries are usually the result of experiments. Math-
ematical models, when used at all, are seen more as ways to make numeri-
cal predictions than as ways to understand the basic science. In contrast, many
of the central ideas in evolutionary biology originate in, or are justified by
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purely mathematical analysis. A short list of these central ideas includes: the
. fact that even seemingly weak selection can drive evolution; the existence of
drift and its interplay with selection; the significance of frequency dependent
selection for our understanding of adaptation; the importance of population
structure in evolution; the role of kinship in the evolution of cooperation; the
significance of mate choice as opposed to competition in sexual selection; and
the conditions under which it is, or is not, reasonable to think of selection as
acting at more than one level of organization. All of these subjects have also
been studied experimentally, but none would have gotten far without rigor-
ous mathematical analysis.

Theoretical science begins with what we know and leads us to conclusions
that could not have been made without rigorous analysis. How far a theory can
take us is determined in large part by how solid the foundation is on which it
is built (what we know). This foundation is what allows us to decide when we
can or can not apply the results of our theory, how and when these results can .
be combined, and how to interpret cases in which the theory fails. There are
two main types of foundations that underlie successful theories. The first is a
set of well-understood empirical rules that apply to a wide range of systems.
The second is a set of mathematical theorems derived from unambiguous prin-
ciples, that apply exactly to a well-defined set of systems. Evolutionary theory
provides good examples of both of these foundations.

It is no accident that classical population genetics emerged soon after the
rediscovery of Mendel’s work in 1900. Mendel’s laws have the appropriate
combination of precision and generality to form the basis of a body of math-
ematical theory. The introduction of linkage and recombination fit right into
the basic Mendelian framework, and the discovery made in the middle of the
20th century of the chemical basis of genetic transmission only substantiated
and explained the basic patterns. .

It is interesting to note that other models of inheritance were proposed
in the 35 years between Mendel’s work (Mendel 1865) and its rediscovery in
1900. One of these models, proposed by Galton (1898), posited that an indi-
vidual’s inherited makeup is a combination of separate contributions from
parents, grandparents, and all of the individual’s ancestors, each skipping
over intervening generations. If this had turned out to be correct, subse-
quent evolutionary theory would probably not have gone very far, since
understanding how a population changes could only be based on a detailed
study of its entire history, rather than on its current state and a set of well-
established rules.

The first half of this book is concerned with the mathematical analySIS of
what happens when we combine population level processes, such as selec-
tion, with the basic rules of transmission genetics. This kind of theory, focus-
ing on genes and drawing on the mathematics of sampling, was the only well-
developed mathematical evolutionary theory for most of the 20th century.
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* Of course, not all genes behave in a Mendelian fashion. Meiotic drive, in
particular, subverts the evenness of transmission that Mendel observed. We
will see in Chapter 2, though, that we can still use the formalism of population
genetics to model meiotic drive because we understand the basic process that
meiotic drive distorts. In analogous ways, classical population genetics has
expanded to address a number of subjects, including the evolution of recom-
bination and maternal inheritance, that would have confounded Mendel’s
experiments.

Some problems, though, never fit well into the framework of population
genetics. Though modified Mendelian genetics provides a good foundation for
one- and two-locus population genetics theory, it does not give us so solid a
footing when we are concerned with phenotypic evolution. Phenotypes, both
morphological and behavioral, do not generally exhibit the kinds of simple,
regular patterns that we see in the transmission of alleles. The assumptions
required to connect morphology to a well-behaved Mendelian process are so
extensive and arbitrary that models based on such assumptions cease to have
the foundational quality discussed at the beginning of this introduction.

One possible approach would be to search for “laws” of development that
could substitute for Mendel’s laws as the foundation of a general theory of
morphological evolution. This approach appealed to many researchers, and
a number of putative developmental or morphological “laws” were pro-
posed. However, though there are many tantalizing generalizations about
development which make evolutionary developmental biology an exciting
field, there are no empirical rules that are either universal enough or precise
enough to form the foundation of a truly general theory of morphological
evolution.

Fortunately, there is another route to developing such a theory. As men-
tioned earlier, a body of theory can be built on a set of purely analytical results .
as long as those results are derived from unambiguous premises and apply
exactly to a well-defined set of systems relevant to our interest. The beginning
of such an analytical foundation for evolutionary theory was provided by
Price (1970). In one sense, Price’s theorem is just a formalization of the basic
ideas of Darwin and Wallace. The premise is the same: A population of phe-
notypically variable organisms (or things of any sort) leave descendants bear-
ing some resemblance to their parents. Add to this the fact that organisms
with certain phenotypes leave more descendants than those with other phe-
notypes and you get evolution. Like Darwin and Wallace, Price assumed a
causal connection between phenotype and survival or reproduction and he
thus phrased his theory in terms of selection. However, we will see in Chap-
ter 6 that the same mathematics describes drift if we allow the relation
between phenotype and reproduction to be random.

Like the ideas of Darwin and Wallace, Price’s theorem shifts back and forth
between seeming so obvious that it must be universal, and so simple that it
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must be missing something. Simply looking at the theorem does not provide
. much insight beyond our intuitive understanding of selection. The value of
Price’s theorem lies not in the fact that it says anything shocking, but in the fact
that it is an exact statement of the relationship between differential reproduc-
tion, inheritance, and evolution that was intuitive to Wallace and Darwin and
to most biologists since. As such, this theorem provides the beginning of an
evolutionary algebra; a set of mathematical results that by virtue of their exact-
ness do for general phenotypic evolution what Mendel’s work did for popu-
lation genetics. This is what gives us a foundation from which to derive more
elaborate theories and a standard against which we can check our results.
The theory of phenotypic evolution forms most of the second half of this
book. In Chapter 6, we will discuss the basic theory and see how it unites the
gene based theories that came before with the phenotype based theories that
follow in subsequent chapters. In Chapter 8, we will add some further results
to the algebra of evolution that are appropriate to the study of development.
Just saying that evolutionary theory has'a solid analytical foundation is
not the same as saying that the field of evolutionary theory is anywhere near
complete. There are many areas within evolutionary biology that still consist
largely of loosely connected models with no unifying theoretical framework.
Expanding the general theory to include these will likely change how we
think about the entire subject, but looking at the history of other sciences that
use mathematical theory as a foundation, it seems likely that future devel-
opments in evolutionary theory will not discard the theoretical foundations
discussed here, but will retain them as special cases and build upon them.
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Selection on One Locus

The approach to modeling evolution that arose in the early 20th century in the
work of Fisher, Wright, and Haldane involved assigning fitnesses to geno-
types and then following evolution as a change in allele frequencies. This is
by no means the only informative way to model evolution; we will encounter
other approaches briefly in this chapter and in most of the second half of this
book. Allele-based models are, however, a very useful way to investigate
many evolutionary questions, and they form much of the basis of our under-
standing of the mechanics of evolution.

Because in this kind of model the things on which selection acts {(geno-
types) are not the same as the things whose frequency we are following (alle-
les), we need some way to relate allele frequencies to genotype frequencies.
Such a relationship, given a set of assumptions, was provided independently
by Hardy (1908) and Weinberg (1908, 1909).

Neither Hardy nor Weinberg was trying to provide a way to model evo-
lution. Hardy was responding to the idea accepted by some biologists that
dominance alone could drive evolution. Weinberg was concerned with the
genetics of human traits, particularly the tendency to produce twins. He
wanted to calculate the frequency of such traits under Mendelian inheritance,
but with random mating which he saw as more prevalent in nature than the
strict inbreeding used in Mendel’s experiments (Weinberg 1908, translated
in Boyer 1963).

Hardy and Weinberg independently showed that for an autosomal locus
in a large population in the absence of mutation, migration, and selection,
one generation of random mating produces a distribution of genotypes that
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is a function solely of allele frequencies and does not change over subse-
- quent generations if these conditions (including random mating) continue
to hold.

Denoting allele i by A; and its frequency by p,, the Hardy-Weinberg (H-W)
frequencies of genotypes are just the binomial fréquencies:

Freq(A;A) = p}
Freq(A;A;)=2p,p; (for j#1i)

Since this distribution of genotype frequencies is independent of domi-
nance, it follows that dominance alone can not change genotype (and there-
fore phenotype) frequencies (this was Hardy’s point). With random mating
and allele frequencies equal in males and females, the H-W frequencies of
genotypes are reached in one generation. (Note that two generations are
required if males and females have different allele frequencies, and the H-W
frequencies are approached gradually in the case of overlapping generations
or with sex linkage.)

The significance of this work goes well beyond simply clearing up a mis-
understanding about the role of dominance. By defining the relationship
between allele frequencies and genotype frequencies, Hardy and Weinberg
laid the foundation for a way of modeling evolution by tracking allele fre-
quencies, rather than genotype frequencies, across generations. In this chap-
ter, we focus on the most commonly used selection model in classical popu-
lation genetics: selection acting on genotypes at one locus with two alleles. At
the end of the chapter, we consider some extensions of this theory, including
cases in which we cannot model evolution in terms of allele frequencies. We
begin by considering the basic equations for change in allele frequency given
selection on genotypes. In the following section, we will assume that we are.
dealing only with viability selection. This means that different genotypes have
different probabilities of surviving from the zygote stage to the age of repro-
duction, and that these survival probabilities are causally determined by each
genotype’s corresponding phenotype (we will consider fertility selection later
in this chapter).

Fitness

There is some variation in the literature in the use of the term fitness. Some
authors treat it as a property of an individual; others, as a property of a geno-
type or an allele. We will see in later chapters that the most general and exact
mathematical descriptions of evolution focus on the actual contribution of
individuals to population growth. Accordingly, fitness (designated by capital
W) will be defined as the reproductive contribution of an individual to the .
next generation. (In Chapter 10, where we consider selection acting at differ- .
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ent levels of organization, we will define fitness in an analogous way.) In pop-
ulation genetics, it is common to use genotypic fitness, which is the average
fitness of all individuals in a populatmn who have the same genotype. The
genotypm fitness of genotype A;A; is represented with a lower case w;, under-
standing that this is simply the average value of W over all 1ndw1duals with
gexgotype AA;

In cla551ca1 population genetics, it is assumed that selection acts on indi-
viduals based on their phenotype and that these phenotypes are determined
by the individual’s genotype. For this reason, the distinction between fitness
as a property of individuals and fitness as a property of genotypes is rarely
an issue. There is yet another kind of fitness, though, that we need to note.
Since in this chapter we will study evolution by following allele frequencies
over time, it will be useful to define the effective fitness, or marginal fitness
of an allele. The marginal fitness of an allele A, designated w,, is the aver-
age genotypic fitness over all the genotypes that contain allele 4, weighted
by the probability that a random A, allele finds itself in that genotype (this
idea will be clearer when we actually calculate marginal fitness values). We
always identify marginal fitness values with an asterisk to remind us that
these are average values assigned to a level of organization that is not the
level at which selection is acting. (In Chapters 2 and 10 we encounter cases
in which selection is acting directly at the level of alleles, in which case we
drop the asterisk.)

Fitness and Population Growth

Genotypic fitness may be measured in absolute or relative terms. Absolute _
fitness is the expected number of surviving offspring produced by a parent -
with a particular genotype (alternately, the expected number of successful
gametes). Relative fitness values are simply absolute fitness values scaled °
in some way. For example, dividing each by the largest absolute fitness value
so that the most fit genotype has a relative fitness of 1. When studying evo-
lutionary dynamics, we may use either absolute or relative fitness, for reasons
discussed shortly. However, absolute fitness will make the results more bio- |
logically meaningful because it connects evolutionary theory with the eco- |
logical theory of population growth.

Consider growth of the population over one generation. Letting N, denote
population size at time ¢ and assuming H-W frequencies among zygotes, there
are pzN individuals with genotype A,A;, 2p(1 — p)N, with genotype A;A,, and
(1 ~p)? N, individuals with genotype A,A,. Given the absolute fitnesses of the
different genotype‘; we can write the population size in the next generation as:

Nt+1 =p’N,wy; + 217(1 pIN,wy, +(1-p)? Nthz
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We can rewrite this as:
Ny =WN;

where:

W = p?wyy + 2p(L—plwyy + (1-p) 10y, (L1

The term @ in Equation 1.1 is termed mean population fitness, since it is the
sum of the genotypic fitnesses weighted by their corresponding genotype fre-
quency. Equatlon 1.1 shows that @ also represents population growth over
one generation in a discrete time model; this would not be the case if we used
relative fitness values.

While the population dynamics equation presented above is a discrete
time model, we also sometimes use continuous time models in which popu-
lation growth is represented by per capita instantaneotis growth rate, or m =
1/N dN/dt (i is often denoted by “r” in the exponential population growth
equation). Discrete time models may show very different kinds of behavior
than continuous time models, especially if the per generation growth rate is
large. If the growth rate is relatively small, though, continuous and discrete
time models may be approximately equivalent, and we can find a relationship
between discrete time growth rate, @, and continuous time growth rate, 711, by
equating the models for growth over a single generation:

Ny =N, =Ne" = #i=In(w)

So the per capita population growth rate used in most ecological theory (e.g.,
in the Lotka~Volterra equations) is the natural log of mean population fitness, -
as used in population genetics. ‘

Since we have an ecological interpretation of 7, we wish to know how it
changes with allele frequency leferennatmg Equation 1.1 with respect top
yields:

dw :

— = 2Py + 2WyH ~ 4pWyy — 2Woy + 2pWoy ;

ap (1.2)
=2 pwyy + (1= pwy, | - 2prwy, + (1-plwy,

In this equation, we tacitly assumed that the w; values are not themselves
functions of p. (If they were, we would have to differentiate them as well.) We
are thus assuming that genotypic fitness is frequency-independent. If the fit-
nesses were functions of allele frequency, then we would say that fitness is fre-
quency-dependent. We briefly consider the results of frequency—dependent
selection later in this chapter and more extensively in Chapter 9. ‘
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Two Alleles with Viability Selection

In the simplest models, we assume a population with discrete, nonoverlapping
generatlons In these models, fitness measures contribution to the next gener-
ation. Howevrer, implicit in our model is the assumption that all differences in
thiscontribution to the next generation involve differences in survivorship of
individuals with different genotypes; we are thus studying the effects of via-
bility selection. Differences in fitness may also result from differences in mat-
ing success among those individuals that survive to reproductive age (sexual
selection) and differential offspring production given survival and mating
(fertility selection). Later in this chapter, we learn that fertility selection
requires a different modeling approach and can produce different evolution-
ary outcomes. Sexual selection is discussed in Chapters 2 and 7.

Consider a locus, A, with two alleles, A ,and A,, in a large, randomly mat-
ing population in which Hardy-Weinberg frequencies apply among zygotes
(though not among adults, due to selection). Let p represent the frequency of
the A, allele in the population. The frequency of A, is then 1 — p. In order to
model selection, we assign fitness values to each of the three resulting geno-
types, thus:

Genotype Fitness Frequency
A4, Wy r’
A, Wio 2p(1-p)
A, Wa (1-p)y

Now consider the change in frequency of the A, allele (i.e., the change in
p over a genetation). Though selection is acting on genotypes, we can use the
assumption of random mating to calculate the marginal fitness of an allele by
summing the fitnesses that it has in different genotypes, weighted by the
probability that it would be found in those genotypes. Let w; denote the mar-
ginal fitness of the A, allele. This is the average fitness of A, alleles. Using the
notation P(X) to mean “the probability of X,” we calculate marginal fitness as:

w, = P(paired with another A, Jw,, + P(paired with an 4, )wy,
wy = P(paired withan A; ) Wiy + P(paired with another A, ) Wy

If we assume random mating, the probability of being paired with another
allele of a particular typé is simply the frequency of that type of allele, so we
find:

. w; = PWﬁ +{(1-plwy,

. (1.3)
Wy = Py, + (1—plw,,
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We can now write mean population fitness in terms of marginal fitnesses as:
@ = pw; +(1-phw, (1.4)
From Equation 1.2 and Equation 1.3 we get:

% = 2(“’1 - wz) (1.5)

The term wy is the expected number of descendants of an A, allele. We
define 7, as the actual number of A, alleles in generation ¢, n, as the number
of A, alleles, and 1, = n, + 1, as the total number of alleles in the population.
The Frequency of the A, allele is thenp = ”1/ nr. In the next generation, the
expected number of A, alleles will be mw;, and the total number of all alle-
les will be n,%. We thus find the value of p in the next generation as:

P =——="— (1.6)
. :

Equation 1.6 illustrates why we can scale fitness values any way we want;
any scaling factor applied to all fitness values appears in both the numera-
tor and the denominator of Equation 1.6 and will thus cancel out. To get the
change in allele frequency over a generation we calculate Ap =p,,; - p;:

w w plw - @
Prs1~= Pe = p;—vl %" - Ap:'"L@T"*) 1.7)

Equations 1.6 and 1.7 are very general; they hold even when the population
is not at H-W equilibrium, when there are more than two alleles present, and
regardless of whether fitness is frequency-dependent or -independent. They
follow as long as we define w; as the expected number of descendant alleles
from a given A, allele and @ as the weighted mean of these fitness values for
all alleles. Note, though that without H-W equilibrium we could not use Equa-
tion 1.3 to calculate w;.

Returning to the case of two alleles, substltutmg Equation 1.4 into the
numerator of Equauon 1.7 gives:

py Pl = poi - (= pywy)

w

_ p(1-p)w; - wy)
w

s
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Frequency-Independent Selection

These results apply whether fitness is frequency-dependent or -independent,
though they assume H-W frequencies among zygotes. Assuming that fitness
is frequency-independent, we can combine Equation 1.5 and Equation 1.8 to

get:
;

_pd-pyaw _ pld-p)din(@)
2w dp 2 dp

(1.9)

This is Wright's (1937) equation for an adaptive landscape. A number of
important results are apparent simply from inspecting Equation 1.9. First,
since p(1 - p) is always positive or zero, the direction of evolution (meaning
whether p increases or decreases) is determined by the slope of the plot of @
[or In(@)] as a function of p. Recall that In(@) = 77 is the instantaneous per
capita growth rate of the population. We can thus think of a population as
“climbing” a slope defined by population growth rate.

All stable equilibria are local maxima of @ and In(i). Thus if stable equi-
libria exist (as we'll discuss soon), then frequency-independent selection on
a single locus with two alleles and Hardy-Weinberg conditions tends to
maximize population growth rate. This provides one rigorous formulation
of the intuitive idea of adaptation: organisms evolve traits that maximize
the ability of a population of those organisms to increase in size in its par-
ticular environment.

Figure 1.1 shows plots of mean population fitness for three different fit-
ness regimes and above these are plots of p,,; as a function of p, for the same
fitness regimes. Plotting p,,, versus p, is a standard way of determining the
dynamic behavior of a one-dimensional discrete dynamical system. One can
visually follow the dynamics from a given point by going vertically to the p,,
line from that point, then horizontally to the diagonal (where p,,; = p,), and
repeating the process. A point where the p,,, curve touches the diagonal is
an equilibrium, the stability of which is determined by the slope of the p,; line
at the point of intersection. Just by inspecting Figure 1.1, it is clear that an equi-
librium is unstable if dp,,, /dp, > 1 at the intersection point (see Figure 1.1C).
In the next section, we will see that an equilibrium is also unstableifdp,,,/dp,
<~1. Between these values, where -1 <dp,,,/dp, < 1, the equilibrium is stable.
For frequency-independent selection on one locus with two alleles, there is
always at least one stable point.

We can further understand Equation 1.9 by looking into what p(1 - p)/2
represents. Consider a binomial sampling process, in which we draw N things
(marbles for example) from a very large set of things (>>N, so that we do not
need to recalculate the frequencies after each draw) in which a proportion p
has some property (p is the frequency of green marbles). If we repeated this
exercise many times, the average frequency of green marbles in our sample
would be p. The exact frequency in any one experiment, though, would vary.
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Figure 1.1 Change in allele frequencies and mean population fitness under frequency-
independent selection.(A), (B), and (C) plot p,,, against p,. Points where this curve inter-
sects the diagonat line (on which p,; = p,) are equilibria, the stability of which is deter-
mined by the slope of p,,, at the intersection point.The thin gray lines show trajectories
approaching equilibrium in (A) and (B), and diverging from an unstable equilibrium in (C).
The genotypic fitness functions corresponding to (A),(B), and (C) are shown in (D), (E),and
(F), respectively.

It is a standard result from probability theory that the variance in the fre-
quency of green marbles in our samples of N marbles, if we repeated the .
experiment many times, would be p(1 - p)/N. In our biological model by
assuming random mating, we are saying that producing an offspring geno-
type involves picking a sample of two alleles from a very large source (the
entire gamete pool, which is much larger than the population size). The fre-
quency of A, within a genotype can have one of three values: 0, for A,A, geno-
types; ¥2, for A;A,; and 1, for A;A;. The variance in these values (frequencies
of A, within genotypes) is then p(l p)/2.

We now see that Equation 1.9 says that the change in allele frequency is
simply the variance in genotypes (the things that selection is acting on) mul-
tiplied by the slope of a fitness function and divided by mean population fit-
ness. We will see later on that this basic format is very general, with Equa-
tion 1.9 being one special case.
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i Other biological results also follow from the form of the equations just
given. We can see that both alleles will be maintained in the population only
if the function @ has an internal peak (i.e., some local maximum of @ lies
between zero and one). Now note that for the case of frequency-independ-
ent selection, % is a quadratic function (see Equation 1.1), meaning that it con-
tains terms involving p? but no higher powers of p. Quadratic functions can
have at most one maximum or minimum. We thus know without any further
calculations that there can be at most one equilibrium at which both alleles are
maintained. We can also deduce the conditions under which such an equi-
librium exists. From Equation 1.5 we know that d@ /dp = 0 only if w; = w,. This
means that at any internal equilibrium it must be that:

pwyy+ (1= p)wy, = pwy; + (1= plw,,

U

p(wyy — wy) = (1= p)wyy ~ wy,)

Since both p and 1 - p are positive, the bottom line of the above equation can
only be true if either w,, > (wy;, Wy,) Or Wy, < (Wy;, W,,), Mmeaning that the het-
erozygote is either more fit than both homozygotes or less fit than both of
them. If the heterozygote is more fit than both homozygotes, then the interior
equilibrium will be stable, maintaining both alleles in the population. If the
heterozygote is the least fit genotype, then the interior equilibrium is unsta-
ble, and the outcome of evolution will depend on which side of this unsta-
ble equilibrium we start at.

Frequency-Dependent Selection

Before continuing with our analysis of Equation 1.9, it is worthwhile to con-
sider what would happen if fitness were frequency-dependent. The most com-
mon sort of frequency-dependence occurs when an individual’s fitness is
determined in part by its interactions with other individuals; in such a case,
the fitness of a genotype is dependent on the frequencies of that and other
genotypes in the population. Recall that the assumption of frequency-inde-
pendence first appeared in Equation 1.2 and became important in going from
Equation 1.8 to Equation 1.9. With frequency-dependence, Equation 1.2 must
be rewritten as:

4

"’d",; = pr'u + Zwla - 4]91012 - 2Z022 + przg

» dwy, 1.10)

2 dwyy dw;,
+p°——%+2p(l-p)—=+(1-p)
dp PAL—p dp p dp
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The new terms in Equation 1.10 are simply the derivatives of each geno-
typic fitness value with respect to p (which would be zero with frequency-inde-
pendence) multiplied by the frequencies of the corresponding genotype. The
sum of these is the average value of the derivative of genotypic fitness with
respect to allele frequency, which we can write as E(dw/dp), where E() denotes
expected value. We can thus rewrite Equation 1.10 (using Equation 1.3) as:

W _ Z(w; - w;) + E(dﬂ] (1.11)

Combining this with Equation 1.8 gives:

p(l-p)|dw dw
Ap=2—~ 71
P > [ i E[ ip J] 1.12)

Note that the term in brackets is the derivative of mean genotypic fitness
minus the mean derivative of fitness.

Equation 1.12 allows us to draw an important conclusion concerning fre-
quency-dependent selection. Since the mean derivative of genotypic fitness
across all genotypes is not likely to be zero at exactly the same point where the
derivative of mean population fitness is zero, we see that mean population fit-
ness is no longer necessarily maximized once we have frequency-dependent
selection. Thus, our appealing interpretation of “adaptation” as a trait that
increases overall population growth rate need not increase over evolutionary
time if the fitness of a genotype depends on the frequencies of other genotypes.
Selection could, in principle, lead to a reduction in @, even to the extent that
the population goes extinct (this is sometimes called Darwinian extinction).

Figure 1.2 illustrates the fact that frequency-dependent selection need not
maximize mean fitness, and further illustrates that there may not be any sta-
ble equilibria in a frequency-dependent system. In the example shown in Fig-
ure 1.2, changing a single parameter changes a stable equilibrium (see Fig-
ure 1.2A) into a limit cycle (see Figure 1.2B) and ultimately into a chaotic
attractor (see Figure 1.2C). Note that in this case, how the population evolves
is unrelated to the shape of the fitness landscape. The fluctuations in the cases
of s =1 and s = 2 take place in fitness valleys, and the points of maximum
mean fitness are unstable.

Continuous Time

The derivation above is based on the idea that the population has discrete,
nonoverlapping generations, so we can model evolution with a difference
equation. This is the most common approach in population genetics, but
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Figure 1.2  Evolution under frequency-dependent selection. Denoting the frequency of
genotype AA; by y;, the fitness functions shown are all of the form:w,;; =1-3y,,+ 37,,,
Wy, =1 - 57,5 Wy, = 1-37,, + 37,,, for different values of the parameter s.in (A) and (B) the
gray lines show the first 200 iterations from the starting point, with the following 200 iter-
ations shown in black.The black lines thus show the asymptotic behavior of the system.
(A) For s = 0, there is a stable point; (B) for s = 1, the system settles into a limit cycle; (C) for
s = 2, the system shows chaotic fluctuations, which are aperiodic and would eventually fill
in a region of the graph. (D), (E), and (F) show mean population fitness as a function of p
for the systems shown in (A), (B), and (C), respectively.

sometimes it is more appropriate to use a continuous time model. It is impor-
tant to note that the choice of a discrete or continuous time model can influ-
ence the results we get. For example, the nonequilibrium dynamics shown
in Figure 1.2B and C are impossible in a one-dimensional continuous time
model (dynamical systems theory states that a one-dimensional continuous
dynamical system can exhibit only stable and unstable point equilibria, not
limit cycles or chaos, as seen in Figure 1.2). Discrete and continuous time mod-
els are approximately equivalent only when the per generation rate of change
is small.

In devising a continuous time model, we are implicitly assuming that gen-
erations overlap and that reproduction is always occurring. For some organ-
isms, this is more realistic than the assumption of discrete, nonoverlapping
generations, but it carries a cost for modeling; we can no longer assume that
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genotype frequencies are in Hardy-Weinberg equilibrium. The following der-
- ivation thus makes no reference to genotype frequencies. We are also assum-
ing that the population is not age structured (though a similar model can be
used if the population is in stable age distribution).

Define n; as the number of A, alleles in the population and ny = Zn, as the
total number of alleles of all types The frequency of the i allele is ;ust p; =
n;/ (ny). Instead of using the number of descendants to capture fitness, we focus
on the rate of change in the numbers of each allele type in the population. More
specifically, we are concerned with the per capita rate of change, which is just
the rate of change divided by the actual number of alleles. This term is tradi-
tionally designated by m (after Malthus) and is defined for each allele as:

—

"om dt
If m; remains constant over time, then the population of A; alleles would grow
or decline exponentially. We are concerned with lookmg over a very short

time interval, dt, so it is reasonable to assume that m; is constant over this
interval, thus:

(1.13)

- m.dt
Mgy = i€ (1.14)

As with @ in the discrete time case, we define # = Xp;m, as the mean per capita
rate of increase. The following line of reasoning shows that m is also the per
capita rate of change of the entire population of alleles:

L dnT = Z zﬂmizzpimi =m
nr i 't i

Thus, over a short interval, we can write ny. ., = ny ™%,

To get the rate of change in the frequency of a particular allele, we look
over the very short time interval dt, in which the frequency of allele A, changes
from p; to (p; + dp;). We will treat dt and dp, as differentials, and arrange them,
into a derivative. Using Equation 1.14, we can now write: '

mydt e dt

i
p- + dp e ral— p ——— p-e
L L nTetfldt t emdt t

(=)t (1.15)

Dividing both sides by p; and taking the natural log of both sides yields:

1n[1 + i;ffi} =(m; —m)dt | (1.16)

A useful fact is that if x is very small, In(1 + x) = x. Since we are doing calculus | ‘
and are thus interested in the limit as dp approaches zero, we can rewrite
Equation 1.16 as:
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-f-s(mim m)dt = ~L=p(m;— ) @

5

Note the similarity between Equation 1.17 and Equation 1.7 for the discrete
time case. In fact, theorists often choose to use Equation 1.7 or Equation 1.17
based on whether it is most mathematically convenient to use a discrete time
model or a continuous time model. As previously noted, this is only appro-
priate when the change across a discrete generation is small. For the remain-
der of this chapter, we will go back to using discrete time models, but con-
tinuous models will appear again in the discussion of two-locus theory.

introducing Mutation

So far we have assumed that allelic variation is simply there, ignoring where
it comes from. We now wish to introduce mutation into the model in order
to address an important question: What happens when selection opposes an
allele that keeps reappearing due to mutation? Or, more specifically: How
much variation can be maintained by the balance between mutation and selec-
tion? Answering this last question involves more than just including mutation
in our equations for Ap, it also involves studying the long-term interaction of
selection and mutation.

The mutation-selection equilibrium is the expected frequency of an
allele that is selected against but repeatedly reappears due to mutation. This
equilibrium is a critical part of evolutionary theory because this balarnce of
forces is one of the most important factors maintaining genetic variation
within populations. In Chapter 7, we consider this equilibrium for many loci
influencing a character. For now, we will derive the one-locus case, which is
useful because it gives us some notion of the expected frequency of delete-
rious alleles. o

Finding the mutation-selection equilibrium is an exercise in approxima-
tion and simplification of equations. In this case, it is traditional and conven-
ient to describefitness in terms of a selection coefficient, 5, and a measure of
dormiriance, i. We can then write relative genotypic fitnesses as:

Genotype Fitness
AA, 1-s
AlA, 1-hs
AA, 1

Given these fitness values and using the fact that pr+2p(l—-p)+(1- pP=1,
we get:
@ =1-sp°~ 2hsp(l-p)

wy =1—-sp—hs(1-p) (1-18)
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The degree to which the presence of the deleterious allele reduces mean
fitness below the maximum possible value is sometimes referred to as the
genetic load on the population. When fitness is scaled so that the highest fit-
. ness is 1 (as we are doing in this case), the genetlc load is 1 - %@ or, in this case,
sp? + 2hsp(1 ~ p):

Genetic Load =1-w
We introduce mutation by specifying the rate at which each allele mutates
to the other: ;

The rate at which new A, alleles appear by mutation from A, is u(1 - p), and
the rate at which they disappear due to mutation is vp. We find the frequency
of A, in the next generation by combining these mutation rates with the fact
that p,,, = p,w; /% (see Equation 1.6) to get:

p(1—sp—hs+hsp)
1-sp®~ 2hsp(1-p)

Prr = +u(l—p)—vp (1.20)

In order to simplify the subsequent calculations, we use the fact that we
are solving for the equilibrium frequency of a deleterious allele, so the val-
. ues of p that interest us are quite small. When we see a sum of two numbers
with one number much smaller than the other, we can often ignore the smaller
number without introducing much error into our calculations. (Note that this
does not mean that we can ignore small terms elsewhere in our equations,
such as when they multiply other terms.) In this case, since the equilibrium
frequency for the allele is expected to be quite small, we canset @ = 1 without
introducing much error. Using this approx1mat10n we find the equilibrium
frequency of the deleterious allele, j, by setting p,,, = p, to get:

w(1-p)=sp*+ hsp(1 - p) . a2y

If s and p are small and  is not too close to zero, then hsp(1 - p) >> sp2. In this
case we have |L = hsp, so for the case in which A, is dominant (k= 1) or in
which the heterozygote fitness is intermediate but not too close to that of the
A,A, homozygote, we find the mutation-selection equilibrium to be:

3>
0
FIE

(1.22) . |
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This approximation is obviously not valid if & = 0, so for a completely reces-
sive allele, we use the fact that up << and solve u = sp* to get:

L

p~ |H ,
Py (1.23)

{We can check the accuracy of the approximations in Equations 1.22 and
1.23 against the numerical solution to Equation 1.21 (Figure 1.3). It turns out
that Equation 1.23 is only accurate when there is complete dominance (k =
0). Otherwise, even if 1 is quite small, Equation 1.22 is the best approximation.
Figure 1.3 also shows that reducing the amount of dominance (i.e., moving
h away from 0) rapidly reduces the allele frequency at mutation-selection
equilibrium. We thus expect most of the genetic variation maintained by
mutation-selection equilibrium to involve recessive alleles.

For truly recessive mutations, given s = 0.1 (moderate selection) and a rea-
sonable allelic mutation rate of 1075, Equation 1.23 gives an allele frequency
at mutation-selection equilibrium of p = 0.01; so we expect to find a fair num-

ber of such alleles segregating at a population of a few thousand individuals.
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Figure 1.3  The solid curve shows the mutation-selection equilibrium for different val-

ues of h with s = 0.001.The dashed lines show the approximations based on Equations
1.22 and 1.23. :
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Mutational Load

- Genetic load is the degree to which deleterious alleles cause mean population
fitness to be reduced below its maximum value. This is the same as the degree
to which population growth rate is reduced by the presence of a deleterious
allele. Considering completely recessive alleles (7 = 0) we can calculate the
equilibrium mutational load (genetic load resulting from mutation to dele-
terious alleles) from Equation 1.19 (with & = 0) and Equation 1.23 as:

2
Equilibrium load = sp* = S(\/—% } = (1.29)

Thus, the load resulting from mutation to deleterious recessive alleles is
simply the mutation rate to those alleles. This is surprising sinces, the degree
to which having two copies of the mutant allele reduces fitness, does not
influence the degree to which having those alleles in the population reduces
population growth rate. The reason for this is that the degree of selection
against the mutant, s, influences both the load equation and the equilibrium
allele frequency, and these influences are exactly complimentary. If we
increase the damage done to an individual by the mutant allele, the muita-
tion-selection equilibrium frequency of the deleterious allele decreases, so
that the total loss to the population is unchanged.

The idea of genetic load appears repeatedly in evolutionary theory as a
way to capture the degree to which some process reduces equilibrium fitness
relative to what it would be if that process were not acting. Mutation is not the
only process that does this. For example, consider a case in whichw,; =1 ~s,
wy, =1, and wy, = 1 -5, so that the most fit possible population would con-
sist of all heterozygotes. Mendelian segregation insures that, at equilibrium,
each generation starts out with half homozygotes, so in reality % = 1 —s/2.
In this case, mean fitness is reduced by a factor of s/2, which is referred to as
the segregation load. Segregation load plays an important role in some mod-
els for the evolution of sex (Feldman et al. 1997).

It is important to keep in mind that Equation 1.24 describes the mutational
load at equilibrium. Unlike the Hardy-Weinberg frequencies with discrete gen-
erations, this equilibrium is not attained in one generation, but rather is
approached more slowly. The next example shows that the interplay of selec-
tion with this gradual approach to equilibrium can produce a type of direc-
tionality in evolution.

The Evolution of Outcrossing

An interesting application of the idea of genetic load is the evolution of out-
crossing versus selfing (Bernstein et al. 1985). All of the theory we have stud- ~
ied so far concerns randomly mating populations that are large. In other
words, almost all reproduction involves outcrossing. In order to study selfing,
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we need to recalculate the mutation-selection equilibrium and from this, the
equilibrium genetic load.

¢ First, we must find the mutation-selection equilibrium for a selfing pop-
ulation with the same fitness values that we used previously for an outcross-
ing population. In a population of selfing individuals Hardy-Weinberg fre-
quencies do not apply. Instead, almost all individuals are homozygous and
the!frequency of the A,A, genotype is the same as the frequency of the 4,
allele. Considering only recessive mutations (which make up the majority of
deleterious alleles in a population, as indicated by Figure 1.3), we thus have:

Genotype - Frequency Fitness
- A4, p 1-s
AA, 0 ‘ 1
AA, 1-p 1
From this we see that:
w=1-sp
Load=sp
wy=1-5

From Equation 1.6 and the mutation process described above, the value of p
after a generation of selection and mutation is:

1-s
Dra1 = Bél—(:‘s;l +u(l-p) (1.25)

At equilibrium, p,,, = p, = p. Assuming that sp << 1, we have:

p=p-sp+u—pp = p= (1.26)

S+

If s >> u (which is reasonable, since p is on the order of 107), then the muta-
tion-selection equilibrium for a selfing population is:

L B
=~ .27
p S (1.27)
Note that this is a much smaller number than the equilibrium for an out-
crossing population (see Equation 1.23; recall that a small number squared is
a much smaller number). We can now calculate the equilibrium genetic load

for a selfing population as: '

Load =sp=p (1.28)
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Thus the equilibrium genetic load (the number of individuals lost in each
generation due to the presence of deleterious mutations) is exactly the same
for a selfing population as for an outcrossing one. The allele frequencies that
underlie this load are different for the two reproductive systems though, so
something has to change when a population switches between outcrossing
and selfing.

First, consider a population of selfing individuals and the fitness of a rare
outcrosser. The initial frequency of deleterious alleles is y1/s and the mean
population fitness is @ = 1 - W. Rare outcrossers will get a fitness advantage
from the masking of any deleterious alleles they may carry, since the odds are
low that another individual would carry the same alleles. Thus, outcrossing
increases in frequency (Figure 1.4B). At the same time, the frequency of dele-

(A)

Fitness of individual

-~
=
=

Frequency of outcrossers

Time (generations)

Figure 1.4 (A) Fitness of an individual that outcrosses (solid line) and an individual that
self-fertilizes (dashed line) over time in a population that is initially all selfing until some
outcrossers are introduced. (B) Frequency of outcrossers once introduced. Note that the

fitness of outcrossers may continue to drop even after they have gone to fixation in the
population. :
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terious alleles increases, since more and more of them are masked, and they
approach the new mutation-selection equilibrium. At this new equilibrium,
the mean fitness of outcrossers is exactly the same as was the mean fitness of
selfers before the switch (see Figure 1.4A).

iNow consider a rare selfer in a population of outcrossers. There will be an
initial decrease in the fitness of any individual who does not outcross, since
they will be expressing a relatively large number of deleterious alleles. If we
forced the entire population to switch, there would be an initial reduction in
w, after which it would return to the same equilibrium value that it had before
the switch. ,

All else held equal, it is therefore always easier to switch from selfing to
outcrossing than the reverse, even though the equilibrium genetic loads are
the same. Of course, all else is never held equal; there are advantages to self-
ing, such as nothaving to worry about finding a mate, that may outweigh the
initial reduction in fitness. This will be particularly likely if there is little
genetic variation to begin with. Nonetheless, the example provides a good
illustration of the fact that it is sometimes easier to evolve in one direction than
in another. It also shows that we may miss interesting evolutionary phenom-
ena if we always assume that populations are at equilibrium.

- Multiple Alleles

All of the discussion so far has assumed that there are only two alleles at a
locus. Obviously, there can be (and usually are) more than two alleles of a par-
ticular gene in a population. When there are more than two alleles involved,
we assign a different symbol for the frequency of each allele. We will use p;
to denote the frequency of allele A, keeping in mind that Zp; = 1. In the fol-
lowing derivation we consider only the frequency-independent case.

As before, the mean population fitness is the sum of genotypic fitnesses,
weighted by the genotypic frequencies. With random union of gametes, this
is just:

w= z Zpipj w; (1.29)
i

As in the two-allele case, the marginal fitness of allele A, is found by
summing over the fitnesses that it would have in each possible genotype,
weighted by the probability that a given A; allele will find itself in that

genotype: )
u): = Z p}. wi]- SO W= Z i ’w; {(1.30)
j i

In a population of N diploid individuals, there are a total of 2Np; alleles
of type A, so 2Npw; is the expected number of descendants of 4; alleles and
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2Nw is the expected total number of alleles in the next generation. From this
. we see that Equation 1.6 is unchanged; the value of p; after one generation is:

Pisw;
Pigs == @3

In the two-allele case, we found that d@ /dp determined the direction of
evolution. With more alleles, @ is now a multivariate function, so we are con-
cerned with the partial derivatives. If selection is frequency-independent, then
differentiating Equation 1.29 and invoking Equation 1.30 yields:

0w ) '
— =2 pwy; = 2w, (1.32)
o’ T

Note that what we are doing here is taking the derivative of @ with respect to
p;» holding all other allele frequencies constant (this is the definition of a par-
tial derivative). Substituting Equation 1.32 into Equation 1.31 gives:

w; ; 0w
Pitr1= PT =L

T 2w op; (1.33)

The change in the frequency of allele A;is p;,,, — p; ., s0:

pi 0w _pw
Ap; ==t
Pi= 2% p; W (134

Using Equations 1.30 and 1.32, we can rewrite % as:

— P; ow
w=y L — 1.35)
T2 ap;

Substituting this into the far right term in Equation 1.34 and rearranging
yields:

p; | oW ow :
Ap =} — — y —— : .
P 256[ o, E,‘ Pi 5o ] (1.36)

Equation 1.36 gives the change over a generation in the frequency of a par-
ticular allele. This equation is somewhat different than the equation presented
in many texts, which follows Wright (1942) and involves a nonstandard inter-
pretation of the partial derivative (Edwards 2000). The single allele equation
has led to confusion (Edwards 2000) and seems inappropriate for an inher-
ently multivariate problem. We thus focus on the vector of frequencies of all
alleles, p.-When we write out Equation 1.36 for each allele, we find that the -
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resulting set of equations can be rewritten as a single equation involving vec-
tors and matrices. For the three-allele case, we can write the vector of allele
frequency changes as:

2 r(l-p) -2 pps ||

o _ N - _ E
AF=Ap|=5=| -p2pr PA1-P2)  —Paps 7 wsn

Ps —P3P1 —P3P> Ps (1 - Pa) N

The vector at the far right of Equation 1.37 is the gradient of mean fitness,
written V@. The gradient vector has a straightforward geometric interpreta-
tion; it points in the direction of maximum increase of the function (in this case
), and its length is the slope of the function in that direction.

The matrix on the right-hand side of Equation 1.37 also has a straightfor-
ward interpretation. We can name this matrix G, with diagonal elements G; =
p{l - p;)/2 and off-diagonal elements given by G; = —p,p;/2, where j = i (note
that we are including the ¥2 term in the elements of the matrlx) Recall from
our discussion of Equation 1.9 that the p(1 —p)/2 term was the variance in
genotypes, given that genotypes were quantified by the frequency of the A,
allele within them (i.e., the values 1, 2, and 0 correspond to genotypes A;4,,
A,A,, and A A,, tespectively). Now that we have more than two alleles, we
need more ways to quantify genotypes. We define g; as the frequency of 4,
alleles within a genotype, so that genotype A, A, has the values g, =¥2, g, =
Y2, g, = 0 (half the alleles in the genotype are 4,, half are A,, and none are A,),
and genotype A;A, has the values g, =0, g, =0, g, = 1. Each genotype thus has
a value for each of 81 &y and g;. We know from our discussion of Equatlon 1.9
that the diagonal elements of G [the p,(1 - p,)/2 terms] are the variances of the
different genotypic values, with G; = p{(1-p,)/2 being the variance in the val-
ues of g; within the poptilation. We can show from the definition of covariance
that the off-diagonal elements of G (the —p;p;/2 terms) are the covariances
between the different genotypic values. These are negative because increas-
ing the frequency of one type of allele within a particular genome tends to

- reduce the frequencies of the others.

We can now rewrite Equation 1.37 in a form that is both compact and

applies to any number of alleles at a locus:

Ap=Svi (1.38)
w

Note that this equation has the same basic form as Equation 1.9, simply sub-
stituting the multivariate terms Ap, G, and Vi for their univariate counter-
parts Ap, p(1-p)/2, and d@ /dp. Equations of the same form as Equation 1.38
will come up repeatedly later in the book, wherever we are concerned with
the effects of selection on multiple traits.
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(A) (B)

P2

Figure 1.5 The geometry of Equation 1.38 for the case of three alleles.(A) The shaded
triangle is the simplex defined by p, + p, + p, = 1.The arrows beginning on the simplex
and extending off of it are the vectors Vi for different points on the simplex, given selec-
tion favoring heterozygotes (w,, = w,, = wy; = 0.2 and w,, = w; 5= W,; = 1).(B) The sim-
plex head on, with dashed lies showing curves of equal Ftness and maximum fitness in
the center.The arrows on the right figure are the vectors Ap defined in Equation 1.38. The
labeled VW vector is the labeled Vi# vector from (A) multiplied by G/(W).

If the vector of allele frequency changes were proportional to Vis, then the
population would always be moving towards a fitness maximum. This is not
the case, however, since Vi is multiplied by the matrix G. Figure 1.5 illustrates
the effect that this has on evolution. Because we are considering frequencies
(p;), populations are restricted to the subset of allele frequency space in which
p;=1.For the three-allele case, this is the triangular region shown in Figure
1.5A, referred to as a simplex. )

Figure 1.5 shows the geometry of the three-allele case. The vectors Vi
extend outside the simplex, but are projected back into it by G/(@). A com-
mon approach to visualizing the three-allele case is to look only at the sim-
plex, represented head on, as in Figure 1.5B. In this representation, each ver-
tex is the point at which one allele is fixed and the others disappear. For
internal points, the frequency of each allele is the distance of the point from
the side opposite the vertex at which that allele is fixed. Such a representation
of three frequencies is used in many areas of science; in genetics it is called a
De Finetti diagram (De Finetti 1926) and was originally used to represent the
three genotype frequencies in a two-allele model.

The dashed lines in Figure 1.5B are contours of equal mean fitness for the
case in which all heterozygotes have high fitness and all homozygotes have low
fitness (specifically, wy; = w, = Wy =0.2and wy, = w5 = wy; = 1). The arrows are
the vectors Ap. Note that these vectors are not at right angles to the fitness con-
tours, meaning that from most starting points, the population does not climb
straight up to the point of maximum mean fitness. Thus, even with frequency-
independence, a population does not climb straight up the fitness landscape. -
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! Despite the fact that the population does not follow the fastest route uphill,
it does end up at some local fitness maximum. The internal equilibria of Equa-
tion 1.38 (i.e., those that are not on a boundary of the simplex) are those points at
which V7 points at right angles to the simplex. To see this, note that any vector
pointing at right angles to the simplex is of the form (x, x, x), with all elements of
the vector being the same. In such a case, we can use Equation 1.36 to get:

1
Ap; = —Z%{p,-x - p,-xz p; ] (1.39)
J

but since Xp; = 1, we get Ap; = 0. A classic theorem in calculus derived by
Lagrange states that, given a smooth function, f, in n-dimensional space, the
maxima and minima of that function on a lower dimensional surface are points
at which the vector Vfis normal to the surface. Thus, points at which the gra-
dient of mean population fitness are normal to the simplex are also points at
which fitness is locally maximized or minimized on the simplex; in other
words, the equilibria are local maxima or minima of @, as in the two-allele case.

It should be noted that the treatment of the multiallelic case just presented
is different from what is presented in many texts. Wright (1937, 1960) pre-
sented an equation for the multiallelic case that focused on a single allele fre-
quency, p;. This equation was basically the equation for the two-allele case (see
Equation 1.9) with the derivative of mean fitness term, d@ /dp, replaced by a
partial derivative, 0% / dp,, in which the partial derivative was interpreted as
the slope of the @ function in the direction of the vertex at which p; = 1. This
equation has been repeated, along with Wright’s interpretation, in a number
of texts. Unfortunately, Wright's interpretation of the partial derivative was
incorrect; a fact pointed out by Edwards (2000), who derived a corrected ver-
sion, analogous to our Equation 1.36, which lacks the intuitive clarity of the
two-allele case. Our Equation 1.38 evades these problems of interpretation by
describing the change in the vector of all allele frequencies rather than just
one. Doing this preserves the conceptual form of the two-allele case and illus-
trates that sometimes taking the seemingly more complicated route—follow-
ing the vector of all allele frequencies rather than a single frequency—yields
a simpler and more intuitive result.

Fertility Selection

The models discussed up to this point assume that selection is manifested as
differential survivorship, properly called viability selection. As we noted
briefly, selection can also act through differential mating success (sexual selec-
tion) or differential reproductive output (fertility selection; sometimes called
fecundity selection). At first glance, one might expect the evolutionary con-
sequences of viability selection and fertility selection to be'the same. After all,
what ultimately matters is the number of surviving offspring, which could be
thought of as (survivorship) x (mating success) x (fertility). In fact, modeling
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fertility selection is much more difficult than modeling viability selection.
* Much of the theoretical work on fertility selection has involved special cases,
such as when the reproductive output of a pair of individuals is the product
of the contribution of the two. Nagylaki (1992) presents a number of different
models involving fertility selection. Rather than go through these different
cases, we will illustrate the approach to modeling fertility selection with an
example that illustrates how it differs from the viability selection models we
have been studying thus far.

What makes fertility selection different is the fact that, in a population of sex-
ually reproducing organisms, an individual does not properly have fertility; a
pair of individuals does. Thus, when modeling fertility selection, we assign fit-
nesses to mated pairs. This means that, for a one-locus two-allele system, we
may need as many as nine different fitness values, corresponding to the nine
different ordered pairs of genotypes. (We consider ordered pairs because
females and males play different roles in reproduction, so an A;4,% x A4,A,C
cross may have a different fitness than an A,A,Q x A; AT cross.)

Fertility selection is a case of selection acting at a higher level of organi-
zation than the individual organism (i.e., a kind of group selection). This is no
mere semantic or philosophical point; it means that we need to modify our
modeling procedure. To illustrate how different fertility selection is from via-
bility selection, consider a case in which individuals mate at random, so that
the frequencies of pairs can be calculated from the frequencies of genotypes.
We denote the frequency of the genotype A;A; by v;; and calculate the contri-
bution of each kind of mating to each different genotype in the next genera-
tion. In Table 1.1 the numbers on the right are the proportions of offspring
from each cross that have a particular genotype. The values under the A, 4,
column indicate the proportion of offspring from each mating that are A;A;.

TABLE 1.1 Table for calculating the contribution of each kind
of mated pair to each genotype in the offspring

Cross Fitness Frequency AA, AA, AA,.
2
AjA X AlAy g Y 1
A X AA;, W T2 % %
AAy xAAy Wy Yi2¥11 % %

AA X AAy Wy Tu¥z 1

AyAy x AjAy Wy YY1 -1 :
Ay X AjAy Wiy 'Y%z Y % Y
Ady X AgAy Wiy Yi2¥22 % % ,
Apfy X AAy Wy YnYi ” %o
Axfy X AyAy  Woyp 1% 1
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Tﬁe frequency values are based on the assumption of random mating. In each
crbss, the first genotype is the female, and the second is the male.

i From this table we can find the genotype frequencies in the next genera-
tmn as:

?

1 2 2
Y1141 =51:[an1111 + VY1 (Wi + wion ) + %Yuwmz]

11,
V22,041 = '5[722302222 +% Y1zYzz(w1222 + w2212) + %Y%zwmz] (1.40)
Yizee1 = 1= Y1141 — Y22,41

Regardless of how alleles are distributed between genotypes, it must be
the case thatp =y, + v;,/2, so we can always calculate the allele frequencies
in any generation. This does not mean, however, that we can model fertility
selection by following allele frequencies, because we cannot necessarily cal-
culate genotype frequencies from allele frequencies. Though we are assigning
fitnesses to mated pairs, random mating allows us to calculate the marginal
fitness of each genotype, just as we calculated marginal fitnesses for alleles in

Equation 1.3.
Z 2 Y km™@ ijkm (1.41)

m2k

The marginal fitness of an allele is a bit harder to calculate, since we can
not use the Hardy-Weinberg equilibrium to find the probability that an A;
allele is paired with an A; allele (see Equation 1.3). In the most general case,
we seek the conditional probability that a chosen A4; allele is paired with an A,
allele, written P(A;lA;)—read “probability of A; given A,.” The frequency of
the (ordered) A4, genotype is written P(A;N A j)—read * probablhty of A; and
A.” These terms are related by a standard result from probability theory
P(ANA ) P(A lA) - P(A). Usmg this relation, and the fact that by definition,
P(A) = p and P(A N Aj) = ¥; we find the conditional probability that an A;
allele is paired with an A alllele as:

pla]a)=2 Lo 1Y (1.42)
(k) =5y
We can now find the marginal fitness of an allele as:
* YZ] *
w; = Z—p«wii (1.43)
~ p; o

Equation 1.43 contains both allele frequencies and genotype frequencies,
suggesting that the marginal fitness of the allele is no longer just a function of
allele frequency. To see some possible consequences of this, consider Figure
1.6, which plots the allele and genotype frequencies for the case in which a
cross between the two different homozygotes has high fitness while all other
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Frequency

Time (generations)

Figure 1.6 Frequencies of the three genotypes (dashed lines) and the A, allele (solid
line) plotted over time for the case of fertility selection with w;,,, =1 and ali other fit-
nesses = 0.025.The system starts out with Hardy-Weinberg frequencies and p,=0.38.

crosses have very low fitness (w;;,, = 1, all other fitnesses = 0.025). The system
begins in H-W equilibrium with p = 0.8, y,; = 0.64, v;, = 0.32, and 7,, = 0.04.

Figure 1.6 illustrates two important points. First, genotype frequencies
continue to fluctuate after the allele frequencies have reached a stable equi-
librium. If we calculate the marginal fitnesses of the alleles, we find that at
p = 0.5, w] = w,, so from the “gene’s eye view,” there is no selection going on.
There is of course selection in this system—we built it in and it drives the fluc-
tuations in genotype frequencies—but it is selection at a higher level of organ-
ization that is not always visible at the allelic level.

The second thing to note from Figure 1.6 is that although the initial geno-
type frequencies are the expected H-W values, they quickly diverge from this
state, despite the fact that we stipulated that individuals randomly mate. This
illustrates the difference between random mating and random union of gametes.
In the model illustrated in Figure 1.6, the probability that an individual will
mate with another having genotype A/, is just ;. This is a reasonable defini-
tion of random mating, but it does not insure that the probability that an allele
will be successfully paired with an allele of type A, is p;- This is because,
although individuals randomly pair up, differential fernhty makes some com-
binations of alleles more likely and others less likely than would be expected
if alleles combined at random. Thus, fertility selection has the same effect as
would nonrandom mating. In fact, we could model the evolutionary effects -
of assortative mating in a table similar to Table 1.1 simply by modifying the
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terms in the “Frequency” column to represent the probabilities of different
matmgs that take place (Crow and Kimura 1970).

i Both fertility selection and nonrandom mating illustrate the significance
Of the assumption of Hardy-Weinberg frequencies described at the beginning
of!the chapter. Populations that attain Hardy-Weinberg equilibrium in one
generation are much easier to model than those that do not. Furthermore,
given H-W frequencies at the beginning of each generation, we can model
evolution as though selection were acting on alleles, even though genotypes
and their corresponding phenotypes are what really determine reproductive
success. Note, though, that this is a fragile state of affairs; a slight change in
the patterns of mating or a bit of fertility selection may require us to track
higher level entities, such as genotypes or even mated pairs (if we combine
fertility selection with nonrandom mating). This is not justa modeling issue,
it represents the potential for new kinds of evolutionary dynamics.

Regression Interpretation

Though itis traditional to model one-locus dynamics purely in terms of allele
frequency, itis also possible to focus on genotype frequencies. Since we started
out by assigning fitness to genotypes, it seems reasonable to follow the units
on which selection is acting directly. The drawback is that there are always
more possible genotypes than alleles, making our calculations a bit more com-
plicated. We shall see, though, that the result is actually simpler than what we
derived when focusing on alleles.

First, we need a quantitative measure of genotype. For a two-allele case,
we use the proportion of A, alleles in the genotype. As mentioned earlier, this
quantity can take one of three values: 0 for A,A,, V2 for A|A,, and 1 for A4,
We can now plot genotypic fitness against genotype. Figure 1.7 plots fitness
as a function of genotype for a particular selection regime (in this example,
Wy, = Wy, =04 and w,, = 1) for different values of p. The size of the dots is pro-

- portional to the genotype frequencies, and the lines represent the least squares
linear regression for each case (see Appendix A).

In Figure 1.7, the heterozygote is more fit than either homozygote (this is
classically referred to as overdominance) and the two homozygotes are
equally fit. Note that the regression line changes as the genotype frequencies
(represented by the size of the dots) change.

In order to see exactly how this representation relates to our earlier results,
we calculate the covariance between fitness and genotypic value (see Appen-
dix A). We define genotypic value, 8;j» as the proportion of A, alleles in the

genotype(93=1,21,=81 =72 8» = O) and v; as the frequency of genotype g;;.
The marginal fitness of A, for the two-allele case, is then:

7;1 wyq + %wu (1.44)
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Figure 1.7  Regressions of fitness on genotype for the case of w,, =1and w,; = w,, =
0.4, given different allele frequencies (A,p =0.3;B,p = 0.5, C, p = 0.7).The size of the dots
indicates the relative frequencies of the three genotypes.

We can now write the covariance between fitness and genotype in terms of
the same parameters that we used in the first part of the chapter. Keepmg in
mind that § = p and that XXy w; = @, we find:

cov(w, g) EZ y,)(gl] )(w - w)
= 22 Vii8iWij — 322%%‘" @szgij +§522Yi;
i i i i
:ZZ Yi8iWi — §W
i

=YuWn+ YW~ W

=plwi- o)

(1.45)

Substituting Equation 1.45 into Equation 1.7 and keeping in mind that g = p
yields: ’

Ap=4g = —%cov(w, g) : (1.4§‘i

Thus, the change in the mean genotype (or the change in p) over a gener-
ation is just the covariance between genotypic fitness and genotypic value,
divided by mean population fitness. Equation 1.46, which makes no assump-
tions about frequency-dependence or about how alleles are arranged into
genotypes, is a special case of the Price equation (Price 1970), (discussed in
Chapter 6) and is even more general than is hinted at by the derivation pre-
sented here. :
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The same derivation can be applied to the continuous case, where we use
the Malthusian parameter, m, rather than w. The exact same derivation as in
Equation 1.45 yields cov(m, g) = p(m’" - i), which when substituted into Equa-
tion 1.17 immediately yields the continuous time equation:

dp _dg _
dt - dt ~COV(w, g) (1.4:7)

We can also write Equation 1.46 in terms of the slope of the least squares
linear regression of fitness on genotype B, , by using the fact that cov(x, y) =
B,.var(x) = B, var(y) and recalling that var(g) = p(1 — p)/2, we get:

- 1
Ap= Ag = % Var(g )ng
_p-p) (1.48)

Note that because we are making no assumptions about frequency-depend-
ence, Equation 1.48 generalizes both Equations 1.9 and 1.12. This illustrates
that modeling evolution in terms of genotypes rather than alleles can actually
lead to a simpler and more general result, though a result not better for all
purposes. The insights concerning the effects of selection on population
growth rate that were clear from Equations 1.9 and 1.12 are not obvious in
Equation 1.46.

Additive Genetic Variance

The regression of fitness on genotype B, is related to another historically
important idea, that of additive genetic variance. Additive genetic variance
properly estimates the covariance between parents and their offspring, and
can be defined for any measurable quantity, including a phenotypic trait or
fitness. We will consider the general concept of additive genetic variance in
Chapter 7. For the one-locus case, additive genetic variance in fitness, V,(w),
measures the variance in the fitnesses predicted from a linear (additive)
regression of fitness on genotype, as shown in Figure 1.8. Since variance meas-
ures squared deviations from the mean, we get this by multiplying the vari-
ance in genotypes by the squared slope of the regression line:

T
%=m2m§g (1.49)

Figure 1.8 shows what we are doing when we calculate additive genetic
variance for a one-locus, two-allele system. V,(w) is the variance in fitness that
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Figure 1.8 Calculation of additive genetic variance. The solid dots represent the actual
genotypic fitnesses, and the line is the least squares linear regression through them.The
open circles represent the estimates of genotypic fitnesses based only on the regression
through them. V,(w) is the variance in these estimates.

we would have if the actual fitness values (solid dots) lay along the least
squares linear regression line (open circles). V,(w) is clearly less than the actual
variance in fitness, since the variance in the distribution of open circles [what
V,(w) measures] is less than the variance in the distribution of filled circles (the
actual variance in fitness). In this case, with one locus and no environmental
effects, the residual variation is generally referred to as dominance variance..

We could also calculate the regression of fitness on the number of A, alle-
les in a genotype (0, 1, or 2) rather than their frequency (0, V2, or 1). If we des-
ignate the regression of fitness on number of A, alleles by v,,,, then B, = 27,
since we are just rescaling the abscissa by a factor of 2. The variance in the
number of A, alleles in a genotype is 2p(1 ~ p), so we could write the addi-
tive genetic variance as V,(w) = 2p(1 - p)y2,. This is the form found in many
textbooks, it is equivalent to Equation 1.49 since B2 =4y2. ‘

If V,(w) is equal to zero, then selection cannot change the allele frequency
and thus there is no directional selection effect. An example of this is seen in
Figure 1.7B, where the regression slope is zero. Note that in this case there is
variance in fitness, and this fitness variation corresponds to genetic variation,
but selection nonetheless does not alter allele frequencies.

It is important to understand that contrary to some statements in text-
books, having zero additive genetic variance does not mean that there is no
selection acting. Nor does it mean that selection does not influence evolution.
Zero additive genetic variance in fitness means only that directional selection
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produces no change in the population mean. The example shown in Figure
1.7B is in fact a classic example of stabilizing (or balancing) selection. Stabi-
lizing selection is an important evolutionary process, influencing such phe-
nomena as the maintenance of genetic varjation (see Chapters 5 and 7) and
the evolution of developmental interactions (see Chapter 8).

{Equations 1.48 and 1.49 are composed of many of the same parts as Equa-
tion 1.12, suggesting a relationship between V,(w) and Ap. Combining these
equations, we find:

- . |ldw dw ,
Vy(w)=T-Ap-B,, = DAp| o —E| L&
W(W)=W-Ap-Byy=w P[ p ( i H (1.50)

If Ap is small (or if d@/dp is approximately linear over the range Ap), then to
a good approximation Ap - dw/dp = AW. Similarly, we can write Ap « E(dw/dp)
= E(dw), where E(bw) is the average change in genotypic fitness due to the
effects of frequency-dependence. Using these new terms, we can rewrite
Equation 1.50 as:

Vy(w) =AW — WE(dw) (1.51)
Rearranging Equation 1.51 yields:
V,
AT = Ag”) + E(8w) (1.52)

Equation 1.52 is one form of the fundamental theorem of natural selec-
tion derived by R. A. Fisher (1930), who thought this equation had great sig-
nificance for our understanding of the process of evolution. In a sense, this
equation partitions the change in mean fitness into two parts. The first part,
V,(w)/w, can be thought of as the change resulting just from the effects of
selection favoring the most fit individuals, holding all aspects of the envi-
ronment (including allele frequencies) constant. The second part, E(Sw), is the
change in fitness due to the fact that with frequency-dependence, genotypic
fitnesses change as allele frequencies change. If selection is frequency-inde-
pendent, then E(dw) = 0 and we need only consider the first term. Since
V,(w)/@ is never negative (variance is never negative), we conclude that with
frequency-independent selection on one locus with a constant environment,
mean population fitness is never decreasing. Many textbooks consider only
the first term on the right side of Equation 1.52.

Fisher referred to the second term on the right side of Equation 1.52 [E(dw)
in our notation] as the “deterioration of the environment.” In the most gen-
eral case, he saw this deterioration as resulting not only from frequency-
dependence but also from coevolution of competitors and predators and from
changes in the physical environment. (See Crow and Kimura 1970 for a deri-
vation that focuses on factors other than frequency-dependence, but yields a
result similar to Equation 1.52.) ,



36 Chapter 1

Fitness Maximization, Optimization, and Potential Functions

. Both Wright and Fisher knew that selection need not maximize mean pop-
ulation fitness. Nonetheless, both seemed concerned with phrasing their
results in terms of something being maximized whenever possible. Wright
was inspired by the possibility that Equation 1.9 suggested that evolution
could be described in terms of a potential function. A potential function is
a function that is minimized or maximized at equilibria and has the property
that the rate of change of the system is proportional to the derivative of the
function. According to Equation 1.9, given the assumptions of frequency-
independence, random mating, etc., mean population fitness meets one of
these criteria [though the p(1 - p) term prevents it from meeting the other].
Wright was attracted to the idea thatevolution could be described in terms
of such a function and tried to generalize Equation 1.9 by invoking a fitness
function that is maximized even under frequency-dependent selection.
Wright noted, however, that this fitness function which he defined by an
integral equation, does not always exist. Even when Wright's fitness function
does exist, it does not guarantee a stable equilibrium in discrete time models
because of the overshoot effect that produces the unstable dynamics shown
in Figure 1.2, :

Fisher’s fundamental theorem represents a different approach; it essen-
tially identifies the component of evolution that involves fitness maximiza-
tion and treats this separately from everything else (the deterioration of the
environment). This particular way of decomposing the evolutionary process
has not been widely used for modeling purposes (though Frank and Slatkin
[1992] find an application), but Fisher considered it to be very significant for
our understanding of the nature of evolution. In particular, he emphasized the
similarities between the fundamental theorem and the second law of ther-
modynamics, which also involves an aggregate property of a system that -
increases with time in the absence of outside influences (entropy)(Fisher 1958,
page 44). The problem with this comparison is that there is no evolutionary
analog of a “closed system” in thermodynamics (which allows no energy
exchange with the outside and within which entropy is nondecreasing). If the
only things that could prevent the steady increase in @ were environmental
changes external to the population itself, then we could (in principle) hold the
external environment constant and have a system in which @ is nondecreas-
ing. However, the fact that the “deterioration of the environment” includes
changes in allele frequencies brought about by the selection process within a
population implies that there is no evolutionary analog of a thermodynamic
closed system. ;

In fact, there is no general potential function underlying evolution. All that
we need to do in order to demonstrate this is find a case in which, under selec-
tion alone, the allele frequencies in a population do not settle down to a sta-
ble point, but rather continue changing forever. We have already seen an
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example of this in Figure 1.2. The fact that selection can result in limit cycles
(see Figure 1.2B), in which the population repeatedly revisits the same states
in.alternate generations, shows that we can not model all evolution in terms
ofisome function that increases every generation. Note that this is not a con-
tradiction of the fundamental theorem, since the frequency-dependence that
drives the fluctuations is part of the E(3w) term in Equation 1.52. Though evo-
lutionary theory is not built on the idea that any quantity is necessarily max-
imized, the idea that there is such a quantity remains one of the most widely
held popular misconceptions about evolution.






