Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Department History
    • News
    • Departmental Announcements
    • In Memoriam
    • Contacts and Information
    • Jobs
    • Buildings
    • Cycling
    • Parking
    • Transit
    • Walking
  • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Current Students
    • Prospective Students
    • Funding
    • Apply to TA
    • Courses & Modules
    • Wellness Resources
    • Student Handbook & Forms
    • Zoology Graduate Student Association
    • Contact
  • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Recorded Seminars
    • Event Archive
  • Resources
    • Workday
    • COVID-19 Safety
    • Zoology Webmail (log in)
    • Password Change (log in)
    • BRC-Zoology Room and Vehicle Bookings (log in)
    • North and East wing Biosci Room Bookings
    • Computing (ZCU)
    • Aquatics (private)
    • Finance
    • HR: Human Resources
    • Safety
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Equity, Diversity and Inclusion Committee (private)
    • Major Zoology Committees (private)
    • Departmental Meeting Notes (private)
    • Zoology Policies (private)
    • Peer Review of Teaching (private)
    • Shipping & Receiving
    • Building access: keys and cards
    • Zoology Logo
    • Edit My Profile (private)
  • Log In

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Department History
    • About the "Huts"
  • News
  • Departmental Announcements
    • Women in Science: Dr. Diane Srivastava
    • 2022
    • 2021
    • 2020
    • 2019
  • In Memoriam
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Cycling
  • Parking
  • Transit
  • Walking

"Discovering the key to birds' agility could improve drone design"

Video
/
March 10, 2022

Press and other articles

Nature Portfolio Ecology and Evolution - Behind the paper, March 10 2022: : To be (stable) or not to be

UBC Science, March 9, 2022 - Discovering the key to birds’ agility could improve drone design

University of Michigan Engineering Research News, March 9, 2022: Avian secret: The key to agile bird flight is switching quickly between stable and unstable gliding

Nature News and VIews, March 7 2022: Trade-offs between stability and manoeuvrability in bird flight

-----------------------------

C. Harvey, V. B. Baliga, J. C. M. Wong, D. L. Altshuler & D. J. Inman. 2022. Birds can transition between stable and unstable states via wing morphing. Nature

Abstract
Birds morph their wing shape to accomplish extraordinary manoeuvres1,2,3,4, which are governed by avian-specific equations of motion. Solving these equations requires information about a bird’s aerodynamic and inertial characteristics5. Avian flight research to date has focused on resolving aerodynamic features, whereas inertial properties including centre of gravity and moment of inertia are seldom addressed. Here we use an analytical method to determine the inertial characteristics of 22 species across the full range of elbow and wrist flexion and extension. We find that wing morphing allows birds to substantially change their roll and yaw inertia but has a minimal effect on the position of the centre of gravity. With the addition of inertial characteristics, we derived a novel metric of pitch agility and estimated the static pitch stability, revealing that the agility and static margin ranges are reduced as body mass increases. These results provide quantitative evidence that evolution selects for both stable and unstable flight, in contrast to the prevailing narrative that birds are evolving away from stability6. This comprehensive analysis of avian inertial characteristics provides the key features required to establish a theoretical model of avian manoeuvrability.

Remote video URL

University of Michigan Engineering - Evolution of bird maneuverability and lessons for UAV design

Remote video URL

UBC - Discovering the key to birds’ agility could improve drone design

Department of Zoology
4200 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail info@zoology.ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility