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The fixation probability of an allele is the probability that it will eventually be the ancestor of

all the alleles within a population at that locus. The time to fixation is the number of

generations that it takes for the allele to progress from its initial frequency to fixation.

Introduction

Within a population, any allele must ultimately persist
or be lost. If, sometime in the future, all members of
the population are descendants of the allele, then that
allele is said to have fixed within the population. If,
sometime in the future, no members of the population
are descendants of the allele, then that allele is said to
have been lost. Using mathematical models, the
probability of fixation and the time until fixation
have been calculated under a range of assumptions. To
some extent, these two quantities are related to most of
the important processes in evolutionary biology.
Evolution by natural selection relies on the greater
fixation probability of beneficial alleles than deleter-
ious alleles. The rate of adaptation depends on the
fixation probabilities and times for alleles that increase
fitness. The relative efficacy of selection and random
genetic drift can be determined from a comparison of
the fixation probabilities of selected and neutral alleles.
The extinction risk of small populations depends on
the fixation rates of beneficial and deleterious muta-
tions. At a molecular level, the rate of substitution
within deoxyribonucleic acid (DNA) sequences
depends on the rate at which new mutations appear
within a population and on their fixation probability.
Thus, an understanding of fixation probabilities and
times provides an important basis for a clear under-
standing of evolution itself. (See Fitness and Selection;
Genetic Drift.)

Probability of Fixation

Let us consider the fate (fixation or loss) of an allele (A)
that arises within a population; A may represent a
nucleotide mutation, an insertion or deletion, or any
other genetic change. The probability of fixation (C) of
allele A depends on several factors, the most important
of which is whether the allele has a positive, negative or
neutral effect on fitness. If the average fitness of
individuals who carry one copy of A is (1 þ s) times

greater than the average fitness of individuals who
carry no copies of A, then the fitness effect of allele A is
measured by s, the selection coefficient. (SeeMutational
Change in Evolution.)

When s is zero, the allele is said to be selectively
neutral. For a neutral allele, the probability of fixation
is equal to p, its initial allele frequency. Consider the
fact that if one looks at some point a long time in the
future, all members of the population must descend
from one and only one allele currently present because
no polymorphism can last forever in a finite popula-
tion. As long as the A alleles always have the same
average fitness as the non-A alleles, the chance that an
A allele will be the lucky ancestor of all descendants far
in the future is simply equal to the chance that an allele
chosen at random from the initial population is the A
allele, which is p. If, initially, there is one copy of the A
allele in a population of census size N and ploidy level c
(c¼ 1 for haploids, c ¼ 2 for diploids, etc.), p¼ 1/(cN)
and hence the fixation probability for a single-copy
neutral allele, CNeutral, is 1/(cN ).

When allele A is beneficial (s4 0), it is more likely to
persist over time because selection acts to increase its
frequency. Haldane (1927) first derived the fixation
probability for a single beneficial allele that appears
within a population using a branching process model.
Haldane assumed that the total number of alleles
within a population (cN ) is very large and constant (so
that the average number of offspring per parent equals
1). Furthermore, he assumed that the number ( j ) of
A-bearing offspring born to a parent carrying allele A
would be Poisson distributed with mean (1þ s).
Consequently, for A eventually to be lost, which occurs
with probability 1�C, each of the j offspring copies of
the A allele must also be lost eventually, which occurs
with probability (1�C) j under the assumption
that the fate of each offspring allele is independent
of the others. This insight allowed Haldane to write
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down an equation that the probability of fixation
must obey:

1�C ¼
X?
j¼0

Poisson½1þ s�ð1�CÞ j

¼
X?
j¼0

e�ð1þsÞ ð1þ sÞ j
j!

ð1�CÞ j ¼ e�ð1þsÞC
ð1Þ

If selection is weak, the solution to the above equation
is approximately

C&2s ð2Þ

This remarkable result proves that selection is not
omnipotent. Selection cannot ensure the fixation of
every beneficial allele, because there is always the
chance that a parent may fail to pass on the allele; for
example, a new allele that confers a 1% fitness benefit
(s ¼ 0.01) is expected to fix only 1.97% of the time
using eqn (1) (or approximately 2% of the time using
eqn (2)).

Kimura (1957, 1962) generalized this result to
include deleterious alleles (s5 0), arbitrary population
size and arbitrary initial allele frequency. By using a
diffusion analysis, Kimura found that the probability
that an A allele would eventually fix is

C&
1� exp½�2cNesp�
1� exp½�2cNes�

ð3Þ

In this equation, Ne is the ‘variance effective popula-
tion size’, which predicts the degree of genetic drift.
Equation (3) is written assuming that allele A has the
same effect on fitness (s) regardless of its genetic
background. For diploids, this implies that allele A is
additive (codominant), but dominance may also be

incorporated (see Crow and Kimura, 1970, p. 427).
(See Diffusion Theory; Effective Population Size.)

Equation (3) is extremely powerful. Although the
diffusion approximation technically holds only for
weak selection and a large population size, in practice
it is approximately correct even for very small
populations and large selection coefficients (Table 1).
Equation (3) also describes the probability that a
deleterious allele will drift to fixation despite selection
against it; for example, a new allele that causes a 1%
selective disadvantage will fix with probability 0.00037
within a diploid population of size 100 but will
essentially never fix (C& 86 10�19) in a diploid
population of size 1000 (putting c¼ 2, p¼ 1/(2N),
Ne¼N and s¼�0.01 into eqn (3)). By taking the
limit of eqn (3) when s¼ 0, we can also regain the result
that CNeutral¼ p. When Ne is large and s is small but
positive, the fixation probability (3) approaches

C&2sðNe=NÞ ð4Þ

Thus, factors that increase the extent of random
genetic drift (i.e. decrease Ne relative to N ) will
decrease the chance that a beneficial allele will become
established within a population. Such factors include a
skewed sex ratio and a high variance in reproductive
success.

The above results assume a population that is
constant in size, homogeneous over space, randomly
mating and unaffected by selection at other loci, but
the models have been extended in a number of
important ways, which make the results more applic-
able to natural populations. Fixation probability can
be significantly affected by population growth and
decline (Ewens, 1967; Otto and Whitlock, 1997),
spatial population structure (Barton, 1993; Whitlock,
2003), inbreeding (Caballero and Hill, 1992) and

Table 1 Probability of fixation (�) for an allele initially present in one copy in a diploid population (c¼ 2; Ne¼N)

Population size (N) Selection (s) �Observed �Branching process �Diffusion

10 0.001 0.0510 0.0020 0.0510
0.01 0.0600 0.0197 0.0601
0.1 0.1787 0.1761 0.1847
1 0.7902 0.7968 0.8647

100 0.001 0.0061 0.0020 0.0061
0.01 0.0201 0.0197 0.0202
0.1 0.1760 0.1761 0.1813
1 0.7958 (0.0004) 0.7968 0.8647

1000 0.001 0.0021 (0.00005) 0.0020 0.0020
0.01 0.0193 (0.0001) 0.0197 0.0198
0.1 0.1760 (0.0004) 0.1761 0.1813
1 0.7975 (0.0004) 0.7968 0.8647

The ‘observed’ probability of fixation was obtained from an exact matrix calculation, when possible, or by simulation
with 106 replicates (followed by standard errors in parentheses). C based on a branching process (eqn (1)) is accurate
for strong selection and/or large populations (Ns4 & 1). C based on diffusion analyses (eqn (3)) is accurate except
with very strong selection (s4 & 0.1).
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selection at linked loci (Hill and Robertson, 1966;
Barton, 1995).

Time to Fixation

Even when an allele ultimately rises to fixation within a
population, it may take many generations, especially
when selection is weak or absent. For a neutral allele
(s¼ 0) initially present in one copy, the average time to
fixation is approximately 2cNe generations, condi-
tional on the allele fixing, a result first derived by
Kimura and Ohta (1969). Note that this result is
approximately the same as that obtained from
coalescence theory for the number of generations,
looking back in time, until all members of a current
population trace back to a single allele (i.e. the time
until the first common ancestor). Either looking
forwards or backwards in time, it takes approximately
2cNe generations for a neutral allele to spread through
drift from a single copy to fixation. (See Coalescence
Theory.)

Selection causes beneficial alleles to rise more
rapidly to fixation. For an additive allele initially
present in one copy, the average time to fixation
satisfies

�tt&
Z 1

1=ðcNeÞ

e2cNesx � 1
� �

e2cNesð1�xÞ � 1
� �

sxð1� xÞ e2cNes � 1ð Þ dx ð5Þ

(Ewens, 1979, p. 151, where results for arbitrary
dominance may also be found). For very weak
selection (s5 1/(cNe)), eqn (5) approaches 2cNe gen-
erations, the fixation time for a neutral allele.
Conversely, for very strong selection (s44 0), eqn (5)
approaches

�tt&
2 lnðcNe � 1Þ

s
ð6Þ

Equation (6) also equals the time for a beneficial allele
to rise from frequency 1/(cNe) to 1�1/(cNe) in a
model that ignores drift (see Crow and Kimura,
1970, eqn (5.3.13)).

Thus, when selection is weak relative to the force of
drift, the fixation time for a beneficial allele is of the
order of the population size, whereas when selection is
very strong the fixation time is much shorter and is
inversely proportional to the strength of selection
(Figure 1). What is much more surprising is that the
time to fixation, conditional on fixation, is the same for
deleterious and beneficial alleles. Although deleterious
alleles are much less likely to fix, when they do rise to
fixation, the time that it takes is also given by eqn (5)
(Maruyama and Kimura, 1974). This is because drift
must, by chance, occur more rapidly if it is to offset
stronger selection against a deleterious allele.

Implications

The probability of fixation has many interesting
implications in evolutionary biology. At a molecular
level, the rate of nucleotide substitution will equal the
rate of appearance of new alleles within a population
times their probability of fixation. For a neutral site
with a per generation mutation rate of m per site (or
mcN per population), the substitution rate will equal
(mcN )6 1/(cN ) or simply m. This calculation predicts
that the rate of substitution of neutral alleles should
depend only on the mutation rate and not on
population size, a fact that has been used to explain
why the rate of substitution is often similar in different
evolutionary lineages (the so-called ‘molecular clock’
hypothesis; Kimura, 1983). Higher (lower) substitu-
tion rates would be observed if the site were under
positive (negative) selection, as can be calculated using
eqn (3). (See Molecular Clocks; Mutation Rate; Nucleo-
tide Substitution: Rate.)

If the rate of appearance of beneficial alleles by
mutation limits the rate of evolution, then the
probability that these new alleles fix is critical to the
evolutionary advance of a species. It is not yet known
to what extent waiting for new mutations limits the
rate of evolution, but potentially this is a large
problem, especially for structural mutations such as
insertions, deletions, and rearrangements. Further-
more, because alleles are more likely to fix if they
have a large advantage, the alleles that do in fact fix in
a population are much more likely to have large effect
than would be expected by the mutational distribution.
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Figure 1 Mean time to fixation for additive alleles in a diploid

population (from eqn 5). The average time to fixation,

conditioned on the fact that the allele does fix, is a decreasing

function of jsj. As the strength of selection increases, both

beneficial and deleterious alleles, if they fix, will fix faster. Alleles

will also fix faster, on average, in populations of smaller effective

size. Note that the mean time to fixation for neutral alleles (s¼ 0)

is 4Ne (for Ne ¼ 10 000, this time is 40 000 generations).
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This may explain in part why the genetic basis of many
selected traits seems dominated by alleles of large
effect (Orr and Coyne, 1992).

The fact that deleterious alleles can fix via genetic
drift allows the possibility that the mean fitness of a
population can decrease over evolutionary time. In
small populations, the risk of decreasing fitness can be
significant and may cause a ‘mutational meltdown’,
where extinction results from the accumulation of
deleterious mutations (Lynch et al., 1995). Further-
more, the rate of fixation of beneficial mutations in
small populations may not be high enough for them to
adapt to and persist in a changing environment. Thus,
because populations with a small effective size fix
more deleterious and fewer beneficial alleles over time
than a larger population, they are doubly endangered
by the effects of genetic drift on fixation rates.

See also
Coalescence Theory
Diffusion Theory
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