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abstract: Females vary in the size of offspring that they produce,
often in a manner that depends on maternal age or stage. This is
puzzling, given that offspring size is predicted to evolve to a single
optimal value where the gain in fitness from being larger exactly
offsets the fitness lost to the mother by producing fewer offspring.
We used a stage-structured life-history model to determine the op-
timal offspring size for females in different stages. We found that
optimal offspring size does not vary with maternal stage when off-
spring fitness depends only on its size and not on the stage of the
mother. This negative result holds even with density dependence,
when larger offspring compete better. However, a trade-off between
offspring size and maternal survival affects the optimal offspring size.
The future reproductive value of the female, coupled with the costs
and benefits of offspring investment, drives the evolution of stage-
dependent offspring size. If producing larger offspring is riskier for
mothers, females produce smaller offspring when their reproductive
value in the next time step is large relative to current reproductive
prospects. These analyses provide a novel framework for understand-
ing why offspring size varies in age- and stage-structured populations.

Keywords: egg size, seed size, fecundity, costs of reproduction, ma-
ternal effect, matrix model, age-structured populations.

Introduction

Variation in offspring size among mothers at different life-
history stages has been widely documented in plants and
animals (Clutton-Brock 1991; Venable 1992; Bernardo
1996; Fox and Czesak 2000; Leishman et al. 2000; Guinnee
et al. 2007; Marshall and Uller 2007; Räsänen and Kruuk
2007; Benton et al. 2008; Marshall et al. 2010; Kindsvater
et al. 2012). Yet why some mothers within a population
make smaller offspring and others larger remains unclear.
Indeed, classic life-history theory predicts that selection
will minimize variation in offspring size, with evolution
proceeding toward an optimal offspring size where the
number of surviving offspring is maximized (Smith and
Fretwell 1974; Lloyd 1987). This optimal size can differ
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among environments. As a consequence, several studies
have focused on how maternal investment per offspring,
including egg size, seed size, and parental care, varies with
ecological factors, such as predation (Reznick and Endler
1982; Walsh and Reznick 2009), competition (Leishman
et al. 2000; Allen et al. 2008; Lieps et al. 2013), mating
system (Sargent et al. 1987; Petersson and Jarvi 2007; Har-
ris and Uller 2009; Llorens et al. 2013; Kindsvater and
Alonzo 2014), and dispersal status (Rees and Westoby
1997; Burgess et al. 2013). Offspring size or quality has
been observed to vary with maternal age or size, however,
even within an environment (Einum and Fleming 2000;
Sakai and Harada 2001; Giron and Casas 2003; Berkeley
et al. 2004; Guinnee et al. 2007; Rollinson and Hutchings
2011; Kindsvater et al. 2012; Zas et al. 2013). These stage-
dependent differences can be quite dramatic. For example,
17-year-old black rockfish (Sebastes melanops) have a six-
fold higher larval provisioning (oil glob size) than 5–6-
year-old females (Berkeley et al. 2004).

Despite these empirical patterns, there are few theoret-
ical explanations for stage- or age-dependent offspring size
in the same environment. Most of these theories focus on
the size of the mother. Parker and Begon (1986) investi-
gated sibling competition and predicted that mothers of
larger size, with more total resources to invest in repro-
duction, tend to invest in larger offspring rather than more
offspring, to reduce density-dependent competition among
siblings. Similarly, if there is a fixed clutch size, females
with more resources will invest in larger offspring (Begon
and Parker 1986). Jørgensen et al. (2011) noted that larger
mothers may also be at lower risk of dying while rearing
offspring; thus, the optimal rearing time and offspring size
should scale with maternal size. Focusing instead on re-
source provisioning while rearing offspring, Sakai and
Harada (2001) demonstrated that larger mothers produce
larger (and fitter) offspring if they can provision at a faster
rate than smaller mothers. Effectively, these models alter
the offspring survival function in a manner that depends
on maternal resource investment, shifting the optimal off-
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544 The American Naturalist

Figure 1: Diagram of the baseline stage-structured model. The proportion of individuals in each stage at equilibrium is determined by the
fertility of females in each stage (Rifi(xi)/xi), stage-specific survival (pi), and the probability of remaining in a given stage (ji). Individuals
that reach stage A2 remain in that stage until death. We assume that A2 females are older and/or larger than A1 females.

spring size predicted by Smith and Fretwell (1974; here-
after, the Smith-Fretwell optimum).

An alternative possibility is that the size or number of
offspring may negatively impact maternal survival. These
costs of reproduction will change the relative fitness ben-
efits of current reproduction and future reproductive value
(Williams 1966). These costs to maternal survival could
arise through several mechanisms. For example, in both
plants and animals, larger seeds or eggs are known to
develop more slowly (Thorpe et al. 1984; Sargent et al.
1987; Shine 1989; Leishman et al. 2000; Zas et al. 2013).
These larger progeny may reduce maternal fitness if fe-
males are more attractive to herbivores when bearing large
progeny (Miles et al. 2000). Larger offspring could also
reduce her ability to evade predators (Ghalambor et al.
2004), demand more resources than a mother would oth-
erwise give during gestation (Haig 1993; Schrader and
Travis 2009), or require extended postnatal care (Shine
1989; Kolm and Ahnesjo 2005; Klug et al. 2013). In ad-
dition, larger offspring could increase perinatal mortality
of the mother (Wells et al. 2012).

The trade-off between offspring size and maternal sur-
vival was investigated in a previous numerical study using
specific functional relationships between offspring num-
ber, size, and maternal survival (Kindsvater et al. 2011).
This study found that with a fixed life span, younger fe-
males alter their reproductive strategies to increase survival
more than older females, even when reproductive effort
was held constant across ages. For example, if having a
larger brood reduces female survival, younger mothers
evolved to produce fewer offspring than older females.
This result suggests that a female should alter the number

and/or size of her offspring in a manner that depends on
her future reproductive value, but it was difficult to de-
termine the exact nature of the relationship because the
predictions were sensitive to the model parameters. Here,
we build on this previous result by building a stage-struc-
tured model that allows us to make explicit the link be-
tween the reproductive value of mothers at different life-
history stages (or ages) and optimal offspring size/number.
We distinguish between changes in reproductive value that
arise from increased reproductive effort with age (as in
fish or trees) and those that arise from increased mortality
with age (as in senescent organisms).

Our objective in this article is to clarify the conditions
under which females at different life-history stages will
produce different-sized offspring, incorporating both the
possibility of a trade-off between offspring size and num-
ber and between offspring size and female survival.
Throughout, we refer to per-offspring investment as off-
spring size, but we note that our models apply equally to
other metrics of maternal investment in offspring (e.g.,
duration of parental care). We build an explicitly stage-
dependent life-history model, using general functions to
describe the trade-off between offspring size, x, and off-
spring fitness, fi(x), as well as between offspring size and
maternal survival, pi(x), for females in stage i. We deter-
mine when these trade-offs cause mothers in different
stages to have different optimal offspring sizes.

We also explore the effect of juvenile competition
(among nonsiblings) on stage-dependent variation in off-
spring size. Comparing species or populations experienc-
ing different levels of competition indicates that more se-
vere competition among juveniles favors larger offspring,
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Egg Size Evolution 545

both empirically (based on evidence from plants and an-
imals: Marshall et al. 2006; Allen et al. 2008; Bashey et al.
2008; Leips et al. 2009, 2013; Llorens et al. 2013) and
theoretically (Rees and Westoby 1997; Geritz et al. 1999).
Whether such competition will also drive females of the
same species but at different stages to produce offspring
of different sizes is unclear.

We first present a baseline version of our model using
a life-history model with three stages (juvenile and two
adult stages) to understand the evolution of offspring size
in the case where only offspring size and number trade
off and when competition is absent. We then investigate
how offspring size changes relative to this baseline when
offspring size affects female survival. In an appendix, we
show that equivalent results apply regardless of the number
of life stages. Last, we ask how density-dependent com-
petition affects the optimal offspring size for females in
each stage.

Model

Baseline Case

We begin with a simple stage-structured model, where we
track the number of females in each of three life-history
stages: a juvenile stage, J; a first adult stage, A1; and a
second adult stage, A2 (fig. 1). The two adult stages may
represent female size, age, or reproductive stages. The life
cycle consists of reproduction, followed by adult mortality,
and finally transitions among life stages. A female adult
in stage i produces a number of offspring, ni, a proportion,
fi(xi), of which survive the mortality phase, where fi(xi) is
any positive function of offspring size, xi, assuming a min-
imum viable investment ( ). We assume that the totalx 1 0i

amount of resources available to a female for reproduction
in stage i is fixed at Ri and that offspring number trades
off with offspring size, such that . The femalesn p R /xi i i

present in the previous time step survive the mortality
phase with probability pJ for juveniles, p1 for females in
the first reproductive stage, and p2 for females in the sec-
ond reproductive stage (surviving females return to the
second stage in the latter case). We initially assume that
these survival probabilities are independent of the size of
offspring produced. (Survival may depend on the total
reproductive effort Ri expended in stage i, but this is held
fixed and described by pi.) Finally, surviving individuals
remain in the same stage with probability ji, otherwise
moving to the next stage (all newly produced young enter
the juvenile stage).

This life-history model can be represented by a system
of linear equations describing the number of females at
each stage:

R f (x )1 1 1J(t � 1) p j p J(t) � A (t)J J 1 x1

R f (x )2 2 2� A (t) , (1a)2 x 2

A (t � 1) p (1 � j )p J(t) � j p A (t), (1b)1 J J 1 1 1

A (t � 1) p (1 � j )p A (t) � p A (t). (1c)2 1 1 1 2 2

Over the long-term, the population will either grow or
shrink, depending on the magnitude of the leading eigen-
value, l, of equations (1) written in matrix form. We
thereby determine the offspring size of mothers in stage
i that will maximize this leading eigenvalue. Specifically,
the leading eigenvalue is the largest root of the charac-
teristic polynomial:

3 2l � (j p � j p � p )lJ J 1 1 2

R f (x )1 1 1� l j p (j p � p ) � j p p � (1 � j )pJ J 1 1 2 1 1 2 J J( )x1

� j p j p p � (1 � j )pJ J 1 1 2 J J

R f (x ) R f (x )1 1 1 2 2 2# p � (1 � j )p p 0.2 1 1( )x x1 2

(2)

If second-stage females can reproduce, the population
growth rate will be larger than that of an equivalent pop-
ulation that cannot reproduce in the second stage, so

. This expression can be rearranged to show thatl 1 lR p02

x p l2 � (jJpJ � j1p1)l � jJpJj1p1 � (1 � jJ)pJR1f1(x1)/
x1 must be positive, a convenient fact that we use below.
All derivations are detailed in a supplementary Mathe-
matica (ver. 8) package (supplementary material, available
online as a zip file).1 Parameters are summarized in table
1.

Differentiating equation (2) implicitly with respect to
x1, we find that

�l (1 � j )p (l � p )J J 2 SFp T , (3a)1
�x x � (2l � j p � j p )(l � p )1 J J 1 1 2

where

R f (x )i i iSF ′T p f (x ) � . (3b)i i i( )x xi i

The fraction in equation (3a) is positive within growing
populations (because ji and pi both lie between 0 and 1,

1 Code that appears in The American Naturalist is provided as a convenience

to the readers. It has not necessarily been tested as part of the peer review.
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Table 1: Summary of parameters

Parameter Description

J Number of individuals in the juvenile stage
A1 Number of individuals in the first reproductive stage (small or young females)
A2 Number of individuals in the second reproductive stage (large or old females)
i Index referencing either first or second reproductive stage
Ri Total reproductive effort in stage i
xi Size of offspring produced in stage i; could be egg size, seed size, parental care duration, or some other metric of

maternal investment
ni Number of offspring produced in stage i; ni p Ri/xi

pi Proportion of females surviving from one stage to the next; can be pJ, p1, or p2; where offspring size trades off with
maternal survival, pi is the function pi(xi)

j Proportion of females remaining in a given stage; can be jJ or j1

l The dominant eigenvalue of the linear system; represents the growth rate of a population or genotype
x A compound term in the denominator of the characteristic polynomial that is always positive
wi The average reproductive value in the next time step expected for a female currently in stage i

SFTi Smith-Fretwell optimum; if , it is the optimum incorporating the reproductive value in the next time stepSFXTi

vi The reproductive value of females in stage i (see the appendix)
M Subscript denoting a mutant strategy
Oi The offspring produced by females in stage i before competition among juveniles occurs
h(a, b) Function describing the interaction between a pair of competitors, a and b
a Determines the strength of density-dependent competition among offspring
kji Positive constant representing the benefits of reducing competition for a larger mutant offspring produced by

females in stage i when competing with offspring from mothers in stage j
r Shape parameter determining the shape of the offspring fitness curve f(x) in the examples presented in

figures 2–4

x is positive, and ). Therefore, the sign of equationl 1 1
(3a) depends on (denoting the Smith-Fretwell term),SFT1

which equals the derivative with respect to x1 of the num-
ber of surviving offspring . Itn (x )f (x ) p (R /x )f (x )1 1 1 1 1 1 1 1

follows that first-stage females are selected to increase off-
spring size, x1, as long as the fitness costs of fewer offspring,

are weaker than the fitness benefits of larger′n (x )f (x )1 1 1 1

offspring, . This process will continue until the′n (x )f (x )1 1 1 1

point , where the product is′f (x ) p f (x )/x n (x )f (x )1 1 1 1 1 1 1 1 1

maximized, or the point where the best strategy is to make
a single large offspring, whichever occurs first. The anal-
ogous result holds for dl/dx2. Therefore, the baseline ver-
sion of our model extends Smith and Fretwell (1974) and
Lloyd (1987, eq. [4]) to stage-structured populations. This
classic result is shown in figure 2, using the function

r
1/r

x � xmaxf(x) p 1 � ,( )[ ]x � xmax min

which varies in shape according to the parameter r. We
use this function and parameters to illustrate the major
findings of our model, but our analytical results do not
rely on this specific function (see the supplementary ma-
terial for other example relationships between offspring
size and survival).

This baseline model clarifies that if the survival of off-

spring depends only on the size of the offspring and not
on the stage of the mother (f (x) is the same for all females),
then females will evolve to produce the same optimal-sized
offspring (which occurs where ). That is, it is im-SFT p 0i

material whether a mother’s reproductive effort (Ri) or
survival rate (pi) rises or declines with age; her optimal
offspring size will be the same. This model predicts stage-
dependent variation in offspring size only when the fitness
of the offspring of a given size depends on the mother’s
stage (i.e., fi(xi) varies with female stage i). For example,
if offspring of first-stage (say, small) females have very low
fitness unless the offspring are large (as in the solid black
curve in fig. 2A) while almost all offspring of large mothers
survive (upper pale short-dashed curve), then small moth-
ers will evolve to produce a single large offspring while
large mothers will produce many smaller offspring (fig.
2B). See “Discussion” for examples where maternal stage
may influence the fitness of offspring as a function of
offspring size.

Trade-Offs between Female Survival
and Per-Offspring Investment

We next investigate an additional trade-off affecting the
evolution of offspring size, namely, when the survival rate
of a mother depends on the size of offspring she produces.
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A

B

Figure 2: Possible relationships between survival and maternal in-
vestment per offspring (size). In A, example offspring fitness func-
tions, fi(xi), vary from convex (solid black curve) or linear (straight
line) to concave (short- and long-dashed gray lines) according to a
shape parameter r. Fitness is a positive function of investment be-
tween a minimum and maximum level, and . Inx p 0.5 x p 5min max

B, we show how the product of offspring number and offspring
survival (maternal fitness) varies as a function of offspring size for
the survival functions illustrated in A. Because of the trade-off be-
tween offspring size and number, maternal fitness is maximized at
intermediate offspring sizes (stars in circles for short- and long-
dashed gray lines) or at the maximum possible size (stars for solid
black curves). For the concave cases, A also shows the optimal points
(stars in circles) as those where the tangent (thin line, ) equals′f (x )1 1

the rise over run, f1(x1)/x1, a geometric interpretation of the Smith-
Fretwell condition (eq. [3b]).

Alternatively, it might be the number of offspring pro-
duced, not their size, that impacts a mother’s survival (e.g.,
if having more offspring is more likely to attract preda-
tors); this is, however, mathematically equivalent to having
offspring size affect survival because we assume a fixed
reproductive budget with . To allow for any(n p R /x )i i i

possible trade-off, we let the adult survival probability de-
pend on the size of offspring produced and on the stage
of the mother pi(xi).

Equations (1b) and (1c) then become

A (t � 1) p (1 � j )p J(t) � j p (x )A (t), (4a)1 J J 1 1 1 1

A (t � 1) p (1 � j )p (x )A (t) � A (t)p (x ). (4b)2 1 1 1 1 2 2 2

To determine the optimal offspring size, we again solve
for the characteristic polynomial and use implicit differ-
entiation of the leading eigenvalue to determine how the
growth rate of a population changes with xi. For females
in stage 1, we find that

dl (1 � j )p (l � p (x ))J J 2 2 SFXp T ,1dx x � (2l � j p � j p (x ))(l � p (x ))1 J J 1 1 1 2 2

(5a)

whose sign is determined by

R f (x )i i iSFX ′ ′T p f (x ) � � w p (x ). (5b)i i i i i i( )x xi 1

The effect of changing the size of offspring produced by
second-stage females yields a similar equation (supple-
mentary material), whose sign depends on . ( rep-SFX SFXT T2 i

resents the Smith-Fretwell term, extended to include trade-
offs between offspring size and maternal survival.)

According to equation (5b), the importance of the
trade-off with maternal survival on the evolution of off-
spring size depends on the impact of producing larger
offspring on maternal survival, , multiplied by wi. The′p (x )i i

term wi can be shown to equal the average reproductive
value of a surviving mother in the next time step:

w p j v � (1 � j )v , (6a)1 1 1 1 2

w p v , (6b)2 2

where

l � p jJ Jv p , (7a)1 p (1 � j )J J

(R /x )f (x )2 2 2 2v p (7b)2
l � p (x )2 2

are the reproductive values of adult females currently in
adult stage 1 and 2, respectively. (Reproductive values are
given by the left eigenvector associated with the leading
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eigenvalue of the transition matrix. They describe the con-
tribution of individuals in each stage to the long-term
population growth, measured here relative to the juvenile
class, and are never negative.)

Importantly, while equation (5a) was based on a three-
stage model, the form of remains the same regardlessSFXTi

of the number of stages (see the appendix for equivalent
results in a model with an arbitrary number of stages).
Thus, the optimal offspring size for females in stage i is
where is satisfied, even with an arbitrary numberSFXT p 0i

of stages. This result raises several important points. We
expect the classic Smith-Fretwell optimum to be reached
for any stage in which the female’s survival does not de-
pend on offspring size ( ) or if the female has′p (x ) p 0i i

no expected future reproductive success ( ). If thew p 0i

survival of a female can be increased substantially by mak-
ing smaller offspring ( ), then the optimal off-′p (x ) ! 0i i

spring size will be shifted down from the Smith-Fretwell
optimum (given by setting eqq. [3] to 0). However, even
if females in all stages face the same survival trade-off
(identical p(x) functions) and offspring fitness depends
only on offspring size and not maternal stage (identical
f (x) functions), the optimal offspring size will still vary
among females of different stages as long as their expected
reproductive values in the next time step differ, contrary
to the baseline model (eq. [3b]). This is a novel result that
we investigate next.

Assuming that maternal survival declines with offspring
size ( ; opposite predictions hold if ),′ ′p (x ) ! 0 p (x ) 1 0i i i i

females who are likely to have high reproductive value in
the next time step relative to their current reproductive
resources (high wi relative to Ri) should evolve smaller and
less costly offspring than females with a low reproductive
potential (low wi relative to Ri). This means that when
reproductive effort (Ri) increases with age or stage (e.g.,
because of indeterminate growth), females will tend to
have increasingly large offspring as they age, assuming
female survival does not depend on her age. To unpack
this further, in figure 3 we consider the effects of female
survival and reproductive effort on reproductive value sep-
arately in the multistage version of our model (see the
appendix).

First, all else being equal, if female survival pi(xi) declines
with stage (dark triangles, short- or long-dashed curves),
causing her reproductive value to also decline with stage
(“senescence,” fig. 3A), younger females should produce
smaller offspring to maximize their chances of surviving
to reproduce again while young, when they will still have
high reproductive value. By contrast, if female survival
increases with stage, younger females should produce
larger offspring, to maximize their current fitness, because
young females are more likely to face low survival than
older females in the subsequent time step. In the three-

stage model, this requires that stage 1 females can return
to the first stage (otherwise, all females have identical fu-
ture reproductive values). This is not necessary in the mul-
tistage model (fig. 3).

Second, predictions are more subtle when reproductive
effort (Ri) varies with female stage (holding survival rates,
pi(xi), constant with i) because both future reproductive
value wi and current effort Ri will change, and it is their
relative value that determines how much offspring size
should depart from the Smith-Fretwell optimum (eqq.
[5]). For example, in figure 3, when reproductive resources
rise with age and survival does not depend on maternal
age (gray short-dashed curves), young females have lower
reproductive values than older females (fig. 3A). Never-
theless, young females still invest in smaller offspring than
older females because it matters more to them that they
survive to reproduce in the future, when their reproductive
value will be higher (fig. 3C). More complex results are
possible, however, when reproductive effort rises non-
linearly with age or when maternal survival and repro-
ductive effort both vary with age (e.g., gray squares with
dashed line in fig. 3). In particular, the optimal offspring
size can decline and then rise with age if reproductive
reserves Ri rise with age and pi(xi) (survival after repro-
duction) does not depend on age. For example, if Ri rises
slightly with age early in life and then increases rapidly
later, females of intermediate age produce the smallest
offspring because they are close (in age) to having massive
reproductive potential. In other words, it behooves them
most to survive (see the example in the supplementary
material).

Finally, the shape of the offspring fitness function will
affect the extent to which optimal offspring size in each
stage differs from the Smith-Fretwell optimum even if we
assume that the function f (x) does not vary with maternal
stage. If the fitness function rises rapidly and then flattens
out (fig. 2, upper pale short-dashed curve), we expect only
modest differences in optimal offspring size with maternal
age because of the rapid decline in number of surviving
offspring away from the optimum. Conversely, if the func-
tion is concave up (fig. 2, solid black curve), the largest
possible offspring (a clutch size of 1) will evolve unless
the survival costs to the female’s survival are sufficiently
strong. When f (xi) is linear or nearly so, we expect the
largest deviations from the Smith and Fretwell (1974)
predictions.

Density-Dependent Interactions
among Juvenile Nonrelatives

The demographic model explored above is predicated on
a growing population and ignores density-dependent pro-
cesses that regulate population size. Here, we expand on
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Figure 3: The evolution of offspring size in a multistage life cycle. We used the multistage demographic model (eq. [A1]) to determine
the optimal investment in offspring for several mortality and reproduction schedules. Female survival in stage i declined with offspring
investment (xi) and with female stage (short-dashed triangle curves: ; all other curves: ), according to the functionz p 0.2i z p 0 p pi

(except black lines with ). Female reproductive investment in class i was set to except for the light gray0.9 � 0.04x � z p p 0.9 R p 5i i i i

curves (short and long dashed) where investment rose with age, for which . Surviving females progressed to the next stage ( );R p i j p 0i i

females in the last stage were assumed to return to this class ( ) except for the long-dashed curves (dark triangles and light squares),j p 15

where this stage was assumed to be terminal ( ). Consequently, reproductive values varied among female stages (A). For the casesj p 05

explored, younger females always invested less in each offspring than older females (B), except when all females had equal reproductive
resources and survival probabilities (black line at 0.89); offspring sizes are always less than or equal to the Smith-Fretwell optimum at 0.95
(longer black line), because of the trade-off between offspring size and female survival. The optimal size of offspring depends on a female’s
current reproductive resources relative to her reproductive value in the next time step, (see eq. [A4]), as in C; this fractionR /(R � w )i i i

ranges from 0 (when females do not reproduce in the current stage) to 1 (when females have no future reproductive success). Other
parameters are as follows: ; offspring fitness function f(x) from figure 2 with ; no competition.p p 0.25 r p 0.5J
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the previous case to consider how adding density-depen-
dent interactions among nonsiblings affects the optimal
offspring size. Empirically, the strength of density-depen-
dent competition experienced by juveniles is known to
affect maternal allocation tactics (Allen et al. 2008; Lieps
et al. 2013; Llorens et al. 2013), but there are few models
predicting how density dependence affects the evolution
of offspring size. For simplicity, we assume that density
dependence acts only on the juvenile stage and that ju-
veniles do not return to the juvenile stage ( , no seedj p 0J

bank); this latter assumption is relaxed in the supplemen-
tary material. Allowing the survival of newly produced
offspring to depend on the total number of offspring in
the population, equation (1a) then becomes

J(t � 1) p O [1 � a (O � O )]1 1 2

� O [1 � a (O � O )], (8)2 1 2

where is the total number of sur-O p A (t)(R /x )f (x )i i i i i i

viving offspring produced by females in stage i before com-
petition and a determines the strength of competition. We
assume that this system reaches a stable equilibrium and
then consider the dynamics of a rare mutant strategy, M,
that alters the size of offspring produced:

J (t � 1) p O [1 � a (O � O )]M 1M 1 2

� O [1 � a (O � O )], (9a)2M 1 2

A (t � 1) p J (t)p � j A (t)p , (9b)1M M J 1 1M 1

A (t � 1) p (1 � j )A (t)p � A (t)p . (9c)2M 1 1M 1 2M 2

While the density-dependent term ( )1 � a (O � O )1 2

ought to include mutant offspring as well, their impact
on competition has no qualitative effect while the mutant
is rare. To facilitate the analysis, we further assume that
the mutant propagule size is only slightly different from
the resident ( , where d is small). Performingx p x � dxiM i i

a local stability analysis, we find that a mutant that in-
creases offspring size can again invade only if is pos-SFXTi

itive (eq. [5b]), where the wi functions equal the average
reproductive values of surviving first- and second-stage
females (eqq. [6]) for a population that is nearly constant
in size (as when l is near 1 in the previous density-
independent model). Conveniently, this demonstrates that
our previous results are not sensitive to the assumption
of density independence.

Large offspring may, however, have greater competitive
success, which is not included in equations (8) and (9). We
next allow competition to depend on juvenile size via pair-
wise interactions between a competitor, a, and a focal in-
dividual, b, according to the competitive function h(a, b).
This function, which is analogous to the competition co-
efficient in the Lotka-Volterra model, allows for asymmetries

in the effect of one type on another (e.g., larger offspring
may compete strongly for the resources of small offspring,
but smaller individuals may exert little effect on large ones;
see also Geritz et al. [1999] for a similar approach to mod-
eling competition). Equation (8) then becomes

J(t � 1) p O [1 � a (h(x , x )O � h(x , x )O )]1 1 1 1 2 1 2

� O [1 � a (h(x , x )O � h(x , x )O )]2 1 2 1 2 2 2

(10)

(previously, ). Equations (9) are similarly re-h(a, b) p 1
vised to account for size-dependent competition (details
are provided in the supplementary material).

Again, we assume mutant propagule size is only slightly
different from the resident ( ) and performx p x � dxiM i i

a Taylor series of the leading eigenvalue resulting from a
local stability analysis of the system. Mutant strategies that
cause females in stage i to produce larger offspring spread
when the following is positive:

R f (x ) �h(x , x ) �h(x , x )i i i 1 i 2 i′ ′f (x ) � � k � k � w p (x ),i i 1i 2i i i i( )x x �x �xi 1 i i

(11)

where wi is similar to the reproductive value of surviving
mothers in stage i but with additional density-dependent
terms, is the change in the competition func-�h(x , x )/�xj i i

tion experienced by slightly larger mutant offspring pro-
duced by stage i mothers interacting with offspring pro-
duced by females in stage j p 1 or 2 ( is�h(x , x )/�xj i i

assumed to be negative to reflect the release from com-
petition experienced by larger offspring), and kji are pos-
itive constants that measure the benefits to a mother in
stage i of reducing the competition experienced by her
offspring:

a Oj
k p f (x ) . (12)ji i i 1 � a (h(x , x )O � h(x , x )O )1 i 1 2 i 2

See details in the supplementary material.
Competition among offspring essentially shifts the

Smith-Fretwell optimum (term in parentheses in eq. [11]).
That the kji are positive (eq. [12]) implies that the con-
tribution of competition to equation (11) will be positive
when larger offspring compete better against smaller com-
petitors ( ). This is the mathematical man-�h(x , x )/�x 1 0j i i

ifestation of the idea that selection should favor increased
offspring size in more competitive environments regardless
of maternal stage, as found in many species (Hutchings
1991; Bashey 2008; Lieps et al. 2013).

While competition can drive differences in the optimal
size of offspring for all females, it does not, by itself, drive
differences in offspring size between female life stages (fig.
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Figure 4: Interacting effects of the offspring fitness function, reproductive value, and density-dependent competition on the optimal offspring
size. A, First consider the case where all individuals are equally competitive (filled symbols, , ), with two adult stages (graya p 0.001 k p 0i,j

symbols are first-stage females; black symbols are second-stage females). Reproductive effort and survival are equal ( andR p R p 5 p p1 2 J

, with ), and all females move from one stage to the next ( ) so that future reproductive valuep p p p 0.8 p (x) p p � 0.05x j p j p 00,1 0,2 i 0,i J 1

(wi) is equal for all females. Consequently, offspring size does not depend on maternal stage. The X-axis r impacts the shape of the offspring
fitness function, as shown in figure 2. The solid black line is the evolutionarily stable strategy (ESS) given by the Smith-Fretwell optimum. B,
Older females have greater reproductive effort ( and ). In this case, future reproductive value relative to current reproductiveR p 2.5 R p 51 2

resources (wi/Ri) is highest for first-stage females (see fig. 3), so first-stage females (circles) have a smaller optimal offspring size than second-
stage females (triangles). C, As in A, but first-stage females have lower survival ( and ); nevertheless, the optimal offspringp p 0.5 p p 0.80,1 0,2

size does not differ among females because all surviving females enter the second stage (and have equal future reproductive value). D, Scenario
identical to C except that some females remain in the first stage ( ), which increases the relative reproductive value of this stage so thatj p 0.71

first-stage females produce larger offspring. In all cases, when bigger offspring are more competitive (open symbols, and ),a p 0.001 k p 0.1i,j

larger offspring are always optimal (open symbols are always above filled symbols). Size-dependent competition does not by itself cause offspring
size to vary among females in different stages (A, C), although it can interact with differences in future reproductive value (B, D).

4A, 4C). To see this, consider equation (11) in the case
where offspring fitness depends only on offspring size and
not maternal stage ( for all i) and where theref (x) p f(x)i

is no offspring size/maternal survival trade-off ( ′p (x ) pi i

). In this case, in the absence of competition, all females0
would have the same optimal offspring size where

. If we then introduce competition into a pop-SFT p 0i

ulation with no stage-dependent variation in offspring size
( ), equation (11) becomesx p x p x1 2

R f(x) a (O � O ) �h(x, x )i 1 2 i′f (x) � � f(x) .F{ }x x 1 � a h(x, x)(O � O ) �xi 1 2 i x pxi

(13)

Competition therefore selects for smaller or larger off-
spring, depending on the sign of the term in braces. It
will do so for all sizes equally, however, given that this
term does not depend on maternal stage i.
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The effects of size-dependent competition are more in-
tricate when other factors cause optimal offspring sizes to
differ among female stages, such as a trade-off with ma-
ternal survival (fig. 4; supplementary material). In this
case, the extent and even the sign of departures from the
Smith-Fretwell optimum size depend on the specific func-
tional forms that underlie reproductive value (wi) and
competition (h(a, b)), as density dependence affects both
of these terms (through wi and kji). Negative departures
(smaller offspring) are expected when producing smaller
offspring increases maternal survival ( ), but pos-′p (x ) ! 0i i

itive departures (larger offspring) are expected because of
their competitive advantage. The magnitude of the de-
parture also depends on the shape of the fitness function;
for example, when r is very small, the Smith-Fretwell op-
timum is strongly constrained (fig. 2B), and the optimal
offspring size approaches the Smith-Fretwell prediction
(fig. 4; note that solid symbols lie nearer the black curve
for small r).

Our results indicate that competition alone cannot ex-
plain stage-dependent offspring size, although it can mod-
ulate the impact of other factors, supporting the conclu-
sion that “the importance of density-dependent selection
as a major force [driving] the evolution of offspring size
in natural populations remains arguable” (Schrader and
Travis 2012, p. 1481).

Discussion

Our approach combines elements of existing theories of
offspring size to examine these processes in a single model
(Williams 1966; Smith and Fretwell 1974; Sargent et al.
1987; Sakai and Harada 2001; Charnov 2002; Jørgensen
et al. 2011; Kindsvater et al. 2011). In doing so, we are
able to gain insights into the evolution of offspring size
that apply to plant and animal taxa with stage- or age-
structured life histories. We show that stage-dependent
variation in offspring size and number is predicted to arise
primarily when the fitness of offspring depends on the
maternal stage (i.e., females have different Smith-Fretwell
optima) or when females pay survival costs that depend
on offspring size. In the absence of these factors, neither
differences in reproductive value, survival probability, nor
competition will drive stage-dependent differences in off-
spring size.

The offspring fitness function f (x) has been argued to
be essential to understanding variability in offspring size
x (Jørgensen et al. 2011; Rollinson and Hutchings 2013).
Indeed, among-female differences in the offspring fitness
function can explain stage-dependent variation in mater-
nal investment per offspring. Whether such differences are
likely to exist depends on the species in question and
whether the stage of the mother matters to offspring sur-

vival above and beyond the offspring’s own size, for ex-
ample, because experience raising offspring or habitat
quality depends on maternal stage. Even when offspring
fitness depends only on offspring size (f (x) the same for
all females), the extent to which trade-offs between off-
spring size and maternal survival drive departures from
the Smith-Fretwell optimum depends on the shape of
f (x). When the survival of offspring exhibits strong di-
minishing returns (as in the upper pale short-dashed curve
in fig. 2A), the Smith-Fretwell optimum sits atop a very
steep peak (fig. 2B), preventing much stage-dependent var-
iation in offspring size.

While the focus of our analyses was a life-history model
with three life stages, our main results apply to life histories
with any number of stages or ages (appendix). In partic-
ular, if the fitness of offspring does not depend on maternal
stage and if mothers survive at equal rates, regardless of
the size of offspring they produce, then we expect all fe-
males to evolve to produce the same optimal-sized off-
spring, regardless of how reproductive effort and survival
change with age. We identified two main explanations for
why offspring size would depend on maternal stage.

The first explanation is that the fitness of an offspring
of a given size depends on the stage of its mother (fi(x)
varies among females). As mentioned in the introduction,
a variety of mechanisms may underlie maternal stage–
dependent differences in the expected fitness of offspring.
Some of these mechanisms depend on differences among
stages in the amount of resources available for reproduc-
tion, with females with more resources tending to produce
larger broods that may be subject to more sibling com-
petition (Parker and Begon 1986). Others may depend on
the physiological capacity or experience of the mother. For
example, larger females may be able to provision offspring
more efficiently and thus make offspring of larger size and
fitness for a given per-offspring investment (Sakai and
Harada 2001, with x now representing the per-offspring
investment). Alternatively, experienced females may be
better able to nest in higher-quality territories and protect
their brood (Einum and Fleming 2002), leading to higher
fitness for offspring of all sizes. Larger or more experienced
mothers might also be able to choose mates that better
provision their young, which again leads to higher survival
for a given maternal investment in each offspring, favoring
smaller offspring (Kindsvater and Alonzo 2014).

The second explanation is that, if offspring investment
is costly to maternal survival, selection will favor stage-
dependent differences in offspring size because these costs
will have different effects on younger versus older females,
depending on their current versus future reproductive
prospects. That producing eggs is costly to female survival
is widely known, but whether it is more costly to produce
larger eggs than to produce another offspring will vary
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among species. For example, in some species larger seeds
or eggs develop more slowly (Thorpe et al. 1984; Shine
1989; Llorens et al. 2013; Zas et al. 2013). These larger
progeny may reduce maternal fitness if there are risks as-
sociated with larger seeds (e.g., increased attractiveness to
herbivores) or with bearing offspring (e.g., reduced ability
to evade predators).

When offspring size is linked to maternal survival, stage-
dependent variation in offspring size arises naturally, even
when this link is the same for all mothers (p(x) is the same
for all females). This is a subtle but important point. When
the only trade-off involves offspring size and number,
stage-dependent variation is not expected (unless this
trade-off varies among females) because the product of
this trade-off is always in the same stage: a surviving off-
spring. By contrast, when offspring size trades off with
maternal survival, the product differs: a surviving female
in a particular stage. Thus, as long as females have different
reproductive values at different stages, the optimal off-
spring size will vary among females. Several biological
mechanisms could lead to differences in reproductive value
at different life stages (and therefore to differences in off-
spring sizes). First, in species with indeterminate growth,
older females are expected to have higher reproductive
effort because they are larger and can acquire more re-
sources. This mechanism could potentially explain the in-
crease in larval provisioning found in black rockfish
(Berkeley et al. 2004) and swordtails (Kindsvater et al.
2012), as these fish species both have indeterminate growth
and increasing reproductive effort with age. Second, older
females might devote more resources to reproduction in
species where older females are more experienced or able
to secure a better mate, although paternal effects on off-
spring fitness might also affect the optimal offspring size
in that case (Harris and Uller 2009; Kindsvater and Alonzo
2014). Finally, if older females have lower reproductive
effort as a result of senescence, we predict that younger
females will produce larger offspring than other females,
as is seen in some insects (e.g., Giron and Casas 2003).

Our result that females can alleviate the effects of den-
sity-dependent competition by producing larger offspring
is both intuitive and consistent with empirical work re-
lating density to maternal investment (e.g., Bashey 2008;
Leips et al. 2009). Females respond to density by adjusting
maternal investment only if increasing investment im-
proves offspring performance in competition. Further-
more, while density-dependent competition can select for
larger offspring that are more competitive, it will tend to
do so equally for all females, unless one of the factors
discussed above already causes offspring size to depend on
maternal age.

While our results are fairly general and are derived for
the variety of functional relationships that might describe

how offspring survival, maternal survival, and competition
depend on offspring size, several caveats must be borne
in mind. The first is that we have treated the evolution of
offspring size as a continuous variable, when in fact the
number of offspring has to be discrete. Holding the total
reproductive resource budget (Ri) constant for each life
stage, offspring size should then take on discrete values.
This effect has been treated in previous models (e.g., Lloyd
1987; Kindsvater et al. 2010). Alternatively, the resource
budget, offspring size, and offspring number may be con-
sidered as expectations of an underlying distribution, in
which case having a noninteger expected number of off-
spring gains meaning. A second caveat is that we held the
reproductive effort for a female in stage i constant, but Ri

will itself evolve as offspring size evolves because of the
attendant changes to offspring and maternal survival,
which are known to affect the evolution of reproductive
effort (Williams 1966; Stearns 1992). The net result of
selection on offspring size and reproductive budget for
females in different life-history stages has been investigated
previously (Kindsvater et al. 2011) but deserves further
attention.

An important implication of our study is that if off-
spring size (or number) does impact female survival, life-
table data providing the specific mortality rates and re-
productive effort of females at different life stages could
be used to predict intrapopulation variation in offspring
size. In particular, if having smaller offspring enhances
maternal survival, a female is predicted to produce smaller
offspring when her expected reproductive value in the next
time step is large relative to her current reproductive re-
source allocation. It also suggests that offspring size and
number will be most variable in species where mortality
rates and reproductive effort differ across a female’s life
span. In particular, we expect variable offspring sizes to
be most common in species where large individuals have
disproportionately high fertility (such as many fish and
trees) or in species that senesce. Future empirical studies
that consider differences in female reproductive value and
potential costs to females of producing larger offspring
hold much promise for predicting when and why offspring
size depends on a mother’s life stage.
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APPENDIX

Scaling Up to Multiple Stages or Ages

Here we generalize the stage-structured model to an ar-
bitrary number of stages. Denoting stage-specific fecundity
by and stage-specific survival bym p (R /x )f (x ) p pi i i i i i

, equations (1) and (4) can be generalized to an ar-p (x )i i

bitrary number of stages. In matrix form,

j p � m m m … mJ J J 1 2 q⎛ ⎞
(1 � j )p j p 0 … 0J J 1 1

M p 0 (1 � j )p j p … 0 . (A1)1 1 2 2

… … … … 0⎜ ⎟
0 0 0 … j p⎝ ⎠q q

Using classic results of matrix algebra (see Otto and Day
2007, box 10.2), the effect of a change in offspring size,
xi, on the growth rate of the population is given by

� ��l v(dM/dx )uip , (A2)
� ��x vui

where element ui of the column vector represents the�u
fraction of the population at stage i at the stable age dis-
tribution, vi of the row vector represents the reproductive�v
value of females of stage i, and is the average repro-� �vu
ductive value of the population. Taking the derivative of
M and carrying out the matrix multiplication gives

�l u dm dp dpi i i ip v � j v � (1 � j )v . (A3)J i i i i�1( )� ��x vu dx dx dxi i i i

Dividing by vJ and carrying out the derivative of the fe-
cundity term, we regain equations (5), generalized to an
arbitrary number of stages, the sign of which depends on

R f (x )i i iSFX ′ ′T p f (x ) � � w p (x ), (A4)i i i i i i( )x xi i

where

v vi i�1
w p j � (1 � j ) . (A5)i i iv vJ J

The term wi represents the expected reproductive value of
a surviving female in the next time step relative to the
reproductive value of a juvenile. The evolutionarily stable
strategy (ESS) offspring size, xi, is that which causes equa-
tion (A4) to equal 0.

Begon and Parker (1986) also examined a demographic
model with multiple age classes, but their question differed
in assuming a fixed total reproductive budget summed
across the life span. Then, by assuming that an equal num-
ber of offspring is produced in each time step, they were
able to determine the optimum offspring size at each age.

Thus, the inherent trade-off was very different (larger off-
spring now trading off with smaller offspring in the fu-
ture). They also assumed that strategies that maximize
lifetime reproductive success (the sum of mi multiplied by
the probability of surviving to stage i) would evolve, an
assumption that holds true only for populations of con-
stant size (Metz et al. 2008).
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