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We propose two methods to control spatial chaos in an ecological metapopulation model 
with long-range dispersal. The metapopulation model consists of local populations living in a 
patchily distributed habitat. The habitat patches are arranged in a one-dimensional array. In 
each generation, density-dependent reproduction occurs first in each patch. Then individuals 
disperse according to a Gaussian distribution. The model corresponds to a chain of coupled 
oscillators with long-range interactions. It exhibits chaos for a broad range of parameters. 
The proposed control methods are based on the method described by GiiCmez and Matias 
for single difference equations. The methods work by adjusting the local population sizes in 
a selected subset of all patches. In the first method (pulse control), the adjustments are 
made periodically at regular time intervals, and consist of always removing (or adding) a 
fixed proportion of the local populations. In the second method (wave control), the 
adjustments are made in every generation, but the proportion of the local population that is 
affected by the control changes sinusoidally. As long as dispersal distances are not too low, 
these perturbations can drive chaotic metapopulations to cyclic orbits whose period is a 
multiple of the control period. We discuss the influence of the magnitude of the pulses and 
wave amplitudes, and of the number and the distribution of controlled patches on the 
effectiveness of control. When the controls start to break down, interesting dynamic 
phenomena such as intermittent chaos can be observed. 0 1997 Society for Mathematical 
Biology 

1. Introduction. Chaos is a paradigm in ecology. It implies the possibility 
of very complicated population dynamics as a consequence of feedback 
mechanisms such as resource exploitation. Large, irregular, and unpre- 
dictable fluctuations in population size can occur even in the absence of 
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external perturbations like those caused by changing climatic conditions. 
The quest for understanding how often and under which conditions com- 
plex dynamics occur in natural populations is a major driving force for 
contemporary ecological research. 

One important line of thinking in this context concerns the inclusion of 
spatial structure into population dynamic models. It has been shown both 
empirically and theoretically that the dynamics of metapopulations (Levins, 
1970) can be very different from those of their constituent local populations 
(for a review, see Gilpin and Hanski, 1991). Thus, spatial structure can 
prevent extinction (e.g. Huffaker, 1958; Hassell et al., 1991; Holt and 
Hassell, 19931, and it can affect the complexity of population dynamics. In 
particular, it has been argued that spatial extension often has a simplifying 
effect on population dynamics (McCallum, 1992; Hastings 1993; Gyllenberg 
et al., 1993; Stone, 1993; Ruxton, 1994; Doebeli, 1995a; Lloyd, 1995). On the 
other hand, Hastings and Higgins (1994) have shown that spatial structure 
can lead to new and interesting dynamic phenomena. They observed spatial 
chaos and extremely long transient behaviour in a metapopulation model 
with one-dimensional spatial extension and long-range dispersal. In this 
paper, we build on their model and combine it with another line of thought 
that is of increasing importance in chaos theory: the idea of chaos control. 

In a seminal paper, Ott et al. (1990) showed how one can use the 
sensitive dependence on initial conditions to direct and control the trajecto- 
ries of chaotic systems. Thus, making use of the attributes of chaos, one can 
stabilize otherwise unstable periodic orbits by adjusting system parameters. 
Because of the complicated and delicate geometry of chaotic attractors, 
very small adjustments are enough to achieve control. The method of Ott et 
al. (1990) has been successfully applied to a variety of models and experi- 
mental systems in physics (for a review, see Shinbrot et al., 1993) and in 
chemistry (e.g. Chakravarti et al., 1995). Some attempts have been made to 
apply it in ecological and evolutionary modeling (Doebeli 1993, 1995a, b). 

A drawback of the method is that the adjustments in the parameters 
necessary at a given point in time require a rather detailed knowledge of 
the system and its dynamics. Therefore, the method is difficult to apply to 
systems with many degrees of freedom and high-dimensional chaotic attrac- 
tors, even though there are some cases in which such systems can be 
controlled. In particular, despite some success (Sepulchre and Baboyantz, 
1993; Aranson et al., 1994; Astakhov et al., 1995; Brayman et al., 19951, it is 
still a largely open problem how to control systems exhibiting spatial chaos. 

GiiCmez and Matias (1993) have proposed a different method to control 
chaos. Their method is more robust than that of Ott et al. (1990) in the 
sense that it does not require detailed information about the system. They 
propose not to change parameters of a system, but instead to change the 
dynamic variable itself. The size of the adjustment is a fixed proportion of 
the dynamic variable, and the adjustment is made periodically with a 
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certain period often equal to that of the stabilized periodic orbit to which 
the system will be driven. The method works well for simple systems 
(GiiCmez and Matias, 1993; Sole and Menendez de la Prida, 1995). In this 
paper, we apply two variants of this method to the spatial population model 
of Hastings and Higgins (1994). Using numerical simulations, we show that 
the proposed methods work well to control spatial chaos in this metapopu- 
lation model. The model is of a quite general nature, and can be viewed as 
a prototype for models of large numbers of coupled oscillators with long- 
range interactions. Therefore, we think that our methods may prove to be 
useful for a variety of dynamical systems with spatial extension, many 
degrees of freedom, and high-dimensional chaotic attractors. 

2. The Model. In this section, we first describe the metapopulation model 
that we use, and we then explain the two control 
applied to this dynamic system. 

mechanisms that we 

2.1. Metapopulations with long-range dispersal. We envisage a metapopu- 
lation consisting of many local populations living in a patchily distributed 
habitat that extends along a one-dimensional ecosystem such as a sea coast, 
a lake shore, or the edge of a forest. Thus, we consider a one-dimensional 
array of local populations that we label 0,. . . , n. Each local population lives 
in an isolated patch in which it reproduces and from which individuals 
disperse to other patches in the array. We assume that reproduction is 
density dependent due to competition for resources. The model is set in 
discrete time: in each generation, there is first density-dependent reproduc- 
tion in each patch, and then dispersal between patches. The local popula- 
tion densities after the dispersal phase are the densities at the start of the 
next generation. 

To model density dependent reproduction, we use the difference equa- 
tion 

h 
= N, - 

1 + (aNtI’ 

(Maynard Smith and Slatkin, 1973). This equation is among the most 
generally applicable one-dimensional ecological models (Bellows, 1981), 
and it is mathematically more flexible than the often used logistic and 
Ricker equations or than Hassell’s (1975) equation (see Doebeli (1995a) for 
further discussion). In model Cl), N, is the (local) population density at time 
t, and f(N) is the density-dependent fitness function, i.e. the reproductive 



500 M. DOEBELI AND G. D. RLJXTON 

output per individual if the density in a patch is N. The parameter A is the 
intrinsic growth rate, and the parameter b describes the type of competi- 
tion that leads to density dependence. The parameter a describes how well 
the individuals cope with the environment. For more details on the biologi- 
cal interpretation of these parameters, see Hassell (1975) and Schoener 
(1976). Equation (1) describes the dynamics of the local population in each 
of the patches of the metapopulation. For simplicity, we assume that all 
local populations have the same dynamics when isolated, i.e. that the 
demographic parameters A, b and a are the same in all patches. 

As is well known, the dynamics given by (1) can range from simple stable 
equilibria to chaos, depending on parameter values (e.g. May and Oster, 
1976). Roughly speaking, the quantity that determines the dynamics of (1) 
is the derivative of the function G at the equilibrium N*, which is given by 
f( N*) = 1. This derivative is 

(2) 

If ICI < 1, then the equilibrium N* is locally stable. As c decreases below 
- 1, the system exhibits the period-doubling route to chaos (May and Oster, 
1976). 

Let N,[i], i=O,..., n, be the local population density in patch i at the 
start of generation t. The local population densities M,[i], i = 0,. . . , n, after 
reproduction in generation t, but before dispersal are-given by. 

MJil = G(N,[iI) i=O,...,n. 

To complete the description of the dynamic metapopulation 
have to describe dispersal between the local populations. 

(3) 

model, we 
Following 

Hastings and Higgins (19941, we assume that dispersal is given by a 
Gaussian distribution. After reproduction, a fixed proportion of the popula- 
tion in patch i moves to patch j. This proportion is given by 

The parameter D determines the dispersal range: a small D implies large 
dispersal distances and vice versa. We note that p(i, i) = (T/D)-‘/~ is 
independent of i and determines the fraction of each local population that 
remains in the patch. 

Using (4), we can now determine the local populations after dispersal, i.e. 
at the beginning of the next generation. Given all the local populations 
densities M,[i] after reproduction in generation t, we sum up, for each 
patch i, the individuals arriving from the other patches j = 0,. . . , n to 
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obtain 

j=O 

Equations (3) and (5) describe the recursive relation between successive 
generations of the metapopulation model and therefore determine its 
dynamics. 

Let us make a few remarks concerning this model. Equation (4) implies 
that dispersal is symmetric and that the patches are equally spaced with a 
distance of a unit of space between them. While symmetry and equidistance 
are clearly restrictive assumptions that are made here for simplicity, the 
size of the space unit does not matter, as any scaling can be compensated 
by changes in the parameter D. A further implicit assumption of the model 
is that the boundaries of the metapopulation are dissipative, that is, 
individuals that disperse to the left or the right of the array of patches 
representing the habitats of the metapopulation are lost. In the extreme 
case, only half of the individuals that disperse from the marginal popula- 
tions living in patches 0 and IZ, respectively, reach another patch. The other 
half migrates from these marginal patches out of the system. This assump- 
tion seems realistic, and was also made by Hastings and Higgins (1994). An 
alternative, not explored here, would be to assume periodic boundary 
conditions, i.e. to assume that the patches 0 to II are neighbouring patches, 
which would, for example, be realistic if the one-dimensional metapopula- 
tion would occupy the shore of a whole pond or lake. 

On the other hand, equation (4) implies that no individuals are lost 
during dispersal except those leaving the metapopulation at the boundaries. 
This is an assumption that is commonly made in dispersal models describ- 
ing coupled populations with discrete generations (e.g. Hastings, 1993; 
Gyllenberg et al., 1993; Doebeli, 1995a) but that might seem unrealistic. 
However, since we are assuming density-independent dispersal (which by 
itself is a questionable assumption), we can formally incorporate any losses 
due to dispersal within the metapopulation in the fitness function describ- 
ing reproduction in each patch, e.g. by changing the intrinsic growth rate, 
and hence no generality is lost by this particular assumption. 

We note that for fixed i, the sum over the p(i, j), where j runs from - 00 
to +m, is a discrete approximation to the integral over the Gaussian 
distribution with variance l/m, which is equal to 1. Depending on D, 
this approximation might not be very accurate. Thus, for large D, it may 
happen that for some i, the sum CyCOp(i, j) is actually larger than 1, which 
would mean that during dispersal, some individuals were added. To get 
around this problem, we normalized all the p(i, j) by the expression 
2 = CyzoP(n/2, j). Thus, in our numerical simulations, we replaced all the 
p(i, j) by pk j)/Z. 
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Finally, we remark that, although the model represented here is analo- 
gous to the model that Hastings and Higgins (1994) used for their numeri- 
cal simulations, they actually had a different situation in mind in which 
space was continuous, that is, the habitat of the metapopulation was not 
patchy and organisms could thrive at any location in a continuous section of 
a sea coast. Hastings and Higgins (1994) used the space-discrete model 
described here for numerical approximation of their space-continuous 
model. However, the space-continuous model involves discrete-time popu- 
lation dynamics given by difference equations of the form (1) taking place 
on an infinitely small spatial area. We prefer the spatially discrete formula- 
tion of the metapopulation model, in which the local population dynamics 
given by (1) occur in discrete, finite sized patches of suitable habitat. 

2.2. The control mechanisms. GiiCmez and Matias (1993) showed that 
the dynamics of difference equations of the form (1) describing the local 
populations in our model can be controlled by changing the dynamic 
variable N, here the population size, in the following way. Let p be some 
positive integer; p is the period of the control. Then in all generations that 
are multiples of p, we change the population size at the beginning of 
generation t, N,, by a fixed proportion. More precisely, let - 1 < y < 1 be 
some real number in the interval (- 1,l). Then, at the beginning of. 
generation t, we replace A$ by N,(l + y) if t is a multiple of p. Thus, the 
control is given by 

N,,, = WV,) if p does not divide t 

= G&O + r>) if p divides t. (6) 

Giitmez and Matias (1993) showed that if the modulus of y is not too small 
and if p is not too large, then this control mechanism typically forces the 
dynamics of the system on a periodic orbit with a period that is a multiple 
of p (often the multiplication factor is 1; Giiemez and Matias (1993) 
actually showed this for the logistic and for the Ricker equations, but their 
results are also true for other one-dimensional models such as the one 
considered here). 

For our metapopulation model, we generalize this procedure as follows. 
Let H = {O,. . . , n} be the collection of patches in the metapopulation, and 
let KC H be some subset of the patches. K will be the time-invariant set 
of patches to which the control is applied. Thus, let y and p be as above, 
that is, y determines the size of the control and p its period. Then, in 
generation t, we replace the local population N,[i] in patch i by N,[i](l + y) 
if t is a multiple of p, and if i E K, that is, if the patch i lies in the subset 
of patches K chosen for control. Thus, in the controlled system, equations 
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(3) are replaced by 

MJil = G(N,[I’l) i=O , . . . , n if p does not divide t 

i 

G( N,[il) if iEK 
M,[i] = if p divides t. 

G(N,[i](l + 7)) if i E K 

Thus, the method consists of a “pulse control,” i.e. of periodically 

(7) 

removing 
or adding (depending on whether y is negative or positive) a fixed propor- 
tion of the local populations in a fixed subset of all patches at the beginning 
of a generation, i.e. before reproduction. After reproduction, dispersal 
occurs as described in the previous subsection. 

A variant of this control mechanism is obtained by replacing the pulse 
control by a “wave control.” Here, the periodic pulses of fixed size to the 
patches in K are replaced by a “controlling wave,” i.e. by continual, 
sinusoidally varying controls: the wave control is applied in every genera- 
tion, but the size and the direction of the control pulses vary. Formally, this 
control is described by 

G( N,[il) if i@K 

M,[i] = 
G[ NJi]( 1 + ycos[Fj)j if i EK. (@ 

Here, y is the amplitude of the controlling wave and p is its period. 
Sinusoidally varying controls have previously been applied to eliminate 
chaos (Lima and Pettini 1993). However, as in the method of Ott et al. 
(19901, the controls were applied to parameters of the system, not to the 
dynamic variables themselves, and the controlled systems were of low 
dimension. Here, we will see that pulse and wave control of dynamic 
variables in a high-dimensional system work well to tame spatial chaos. 

3. Results. Hastings and Higgins (1994) showed that the metapopulation 
model described in the previous section can have very complicated dynam- 
ics for some set of parameters. In particular, they showed that there may be 
extremely long transients before the system finally settles down on an 
attractor. When moving on these transients, the system experiences differ- 
ent dynamic regimes with abrupt changes between them, ranging from 
cyclic or quasi-periodic motion to spatial chaos. Here, we concentrate on 
parameter regions where these phenomena do not occur. In order to test 
our control mechanisms, we consider parameter regions where the system 
quickly settles on a complicated attractor leading to spatial choice. This can 
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be achieved by choosing the parameters in equation (1) describing the local 
population dynamics in such a way that the complexity ICI, equation (2), of 
this difference equation is large enough. That there is spatial chaos without 
long transients can then be checked numerically (cf. Fig. 1A). 

All results were obtained from numerical simulations. Figure 1 shows 
results of applying the first control mechanism described in the last section, 
i.e. the pulse control, to a chaotic metapopulation. Figure 1A shows the 
chaotic dynamics of an uncontrolled system with 80 local populations. In 
Fig. lB,C, results of applying the pulse control with two different periods 
are shown. In these diagrams, the control starts after 1000 generations, that 
is, after 1000 time steps equations (3) are replaced by equations (7) in the 
iterative procedure. The set K of controlled patches was chosen by includ- 
ing each patch with a probability of 20% using uniform random numbers. 
Thus, in (roughly) 20% of the patches, the control was applied, and the 
controlled patches were more or less evenly distributed over the whole 
metapopulation. 

If the control period is low (Fig. lB), the system is stabilized on a cyclic 
orbit with the same period as used in the control. If the control period gets 
larger (Fig. lC), the control becomes less powerful and more imprecise: the 
system is still stabilized on a periodic orbit, but its period is twice the 
control period. In addition, it may take several hundred generations until 
the control becomes effective. These observations are consistent with the 
results of Giiemez and Matias (1993) for simple models. 

The effectiveness of the control also depends on the magnitude of the 
pulse, i.e. on the magnitude of 1~1, and on the proportion of controlled 
patches. This is illustrated in Fig. 2. In Fig. 2A, the period of the pulse 
control is the same as in Fig. lB, but now the magnitude of y is too small 
for permanent control. However, the control almost works: for intermittent 
periods of time, the system moves on a trajectory that is almost a 2-cycle, 
but the systems always returns eventually, and abruptly, to highly chaotic 
fluctuations, after which it is again confined to simple dynamics for some 
time. The result is a rare example of spatial intermittent chaos. In simple 
systems, intermittent chaos (Pomeau and Manneville 1980) has previously 
been observed by Doebeli (1993, 1994, 1995a,b) and by Gavrilets and 
Hastings (1995) in ecological and evolutionary contexts. It implies radical 
and continual changes between different dynamic regimes. 

In Fig. 2B, the period of the control and the value of y are the same as 
in Fig. lB, but the proportion of controlled patches is smaller. Here, the 
control is also not able to confine the system to a periodic orbit. Instead, 
the dynamics remain chaotic, but the control has the effect of inducing 
much smaller fluctuations in the system. Figure 2C illustrates that in this 
case, too, the control “almost works.” It shows the densities of the local 
populations in consecutive generations. Most of these local populations 
move on nearly cyclic orbits, except some of the marginal ones. For these, 



CONTROLLING SPATIAL. CHAOS IN METAPOPULKTIONS 

400 
. . (A) 

0 10000 20000 30000 

i  i  : 
: 

,., .; 

00 

Figure 1. Effects of pulse control on a chaotic metapopulation. The time series of the total 
density of the uncontrolled metapopulation consisting of 80 local populations is shown in A 
for 30,000 generations to make sure that there is no transient behaviour. In B, the pulse 
control is applied to this metapopulation starting after 1000 generations with a control 
period of 2. The system settles on a 2-cycle. The control was applied to 17 uniformly 
randomly chosen patches (- 20% of the 80 patches) and the magnitude of the control was 
y = -0.2. For higher control periods, larger pulses and a large proportion of controlled 
patches are necessary for control. In C, the system settles on a IO-cycle after a period 5 
pulse control is applied with y = - 0.4 and 32 randomly chosen patches (- 40%). It took ca. 
300 time steps until the control was effective. Similar results would be obtained if the values 
of y were positive with the same modulus. The demographic parameters of the local 
populations given by equation (1) were: A = 14, b = 7.5 and a = 1.4217. The dispersal 
constant in equation (4) was D = 0.0111. 

(B) 
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Figure 1. (Continued). 

the control does not work, and they exhibit more irregular fluctuations. 
These “loose ends” prevent the whole metapopulation from moving on an 
exactly periodic orbit instead of merely exhibiting smaller fluctuations. 

The fact that it is only a certain subset of the local populations which the 
control fails to confine to regular behaviour raises an interesting question. 
To which of the local patches should the control be applied? In other 
words, how should the subset K be chosen? So far, we have worked with K 
consisting of randomly chosen and evenly distributed local populations 
consisting of a certain proportion of all patches in the metapopulation. 
Perhaps surprisingly, the control method fails if this proportion is too high. 
For example, if instead of 20% as in Fig. 1B we chose 70% evenly 
distributed patches, there would be no visible effect of the control. Thus, 
the proportion of controlled patches must be low enough, e.g. to achieve 
control in Fig. 1B it must be lower than ca. 50%. 

Generalizing from simple metapopulations consisting of two patches 
(Gyllenberg et al., 1993), one expects that high dispersal distances, i.e. low 
values of D, would lead to some sort of synchronization in the metapopula- 
tion model (5), and hence to a reduction of its dimensionality. In this case, 
one could imagine that controlling all the patches would lead to simple 
dynamics. However, in the course of many numerical investigations, we 
have never found circumstances in which modifying all the patches in a 
large system lead to control of chaos. Nevertheless, in the absence of 
analytic proof, our conclusion that such action never leads to control should 
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Figure 2. Effects of changing control parameters. The same metapopulation was used as in 
Figure 1. A is the same as Fig. lB, except that the magnitude of the pulse is lower, 
y = - 0.09679. The control works for intermittent periods of time, which alternate with 
periods of chaotic fluctuations with abrupt changes between these dynamic regimes. B is 
again the same as Fig. lB, but the number of controlled patches is lower: 4 of the 17 patches 
used for Fig. 1B were left uncontrolled. The control is less effective, but still has the effect 
of inducing smaller fluctuations in the system. C shows what happens to the local popula- 
tions in this scenario. The population densities in all 80 patches are shown in the eight 
successive generations following generation 5000, i.e. the end of the simulation in B (in the 
plot, lines join the different local densities in each generation). Most local populations are 
nearly 2qclic, except the marginal ones on the right. 
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Figure 2. (Continued). 

be tempered. The referee has provided us with an example of a very simple 
system consisting of three patches in which control can be achieved by 
modifying all three local populations. We hope that others will be able to 
clarify the generality of our observations. 

Even if the proportion of controlled patches is low enough, it depends on 
their distribution whether the control mechanism has an effect or not. In 
general, control is harder to achieve if the controlled patches are clumped 
and away from the margins of the metapopulation. For example, if the 20% 
of controlled patches in Fig. 1B were chosen, instead of being evenly 
distributed, to be the central patches 42,. . . ,57 of the metapopulation, then 
the control would fail. Thus, a low enough proportion of controlled patches 
as well as an appropriate distribution of these patches are necessary 
conditions for an effective control. 

However, as illustrated in Fig. 2B, and as is intuitively expected, control 
is also lost if the proportion of controlled patches is very low. In this case, 
the distribution of the controlled patches becomes even more important. 
For example, in Fig. 2B, the distribution of the relatively few (13) controlled 
patches is too even to achieve control. However, if, instead, the controlled 
patches are chosen to be the ones with numbers 0, 10,20,30 plus the six 
patches on the right margin of the metapopulation (i.e. numbers 75-80), 
then control is again possible. Even though now even fewer patches (ten) 
are controlled, the system settles on 4-cycle (not shown). This is because of 
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the “loose ends” which cause the failure of control with evenly distributed 
control patches as described earlier: the “loose ends” effect disappears if 
the control is specifically applied to marginal patches (at least on one side). 

All the results described so far also hold qualitatively for the second 
control mechanism described in section 2, i.e. for the wave control given by 
equation (8). Figures 3 and 4 summarize some of the effects of wave 

A 

0 
-6.26 -6 -2.75 

Figure 3. Bifurcation diagrams for the wave control. The logarithm of the 
dispersal parameter D was used as bifurcation parameter. Small values of hr( D) 
correspond to large dispersal distances. A shows the uncontrolled dynamics of 
the total density of a metapopulation consisting of 41 local populations (i.e. 
II = 40). In B, a period 2 wave control with y = -0.2 was applied to the 
marginal patches O-11 and 29-40 in the metapopulation, and in C, the same 
control was applied to the marginal patches O-7 and 33-40 and to central 
patches 16-24. The windows of regular dynamics are larger in the former case. 
The demographic parameters of the local populations were A = 5, b = 8.75, and 
a = 1.172. For 200 equally spaced values of In(D), the metapopulation was first 
run without control for 500 time steps, then the control was applied for 700 time 
steps (no control in A). During the last 200 steps, the density was plotted. 
Selected numerical simulations indicated that long transients do not occur for 
the range of parameters considered, so that this procedure is appropriate. 
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Figure 4. Bifurcation diagrams for the wave control. The control magnitude y 
was used as bifurcation parameter for the same metapopulation as in Fig. 3. In 
A, B, the dispersal parameter was D = 0.0136, and in C, D, we set D = 0.0091. 
In AC, the marginal patches O-11 and 29-40 were controlled, while in B,D, 
the control was applied to the marginal patches O-7 and 33-40 and to the 
central patches 16-24. The control works better when a larger proportion of 
marginal patches are controlled. The same procedure as for Fig. 3 was applied 
to obtain the diagrams. 

control. In Fig. 3, bifurcation diagrams are shown with the parameter D 
determining the dispersal distance as bifurcation parameter. Compared to 
the uncontrolled dynamics shown in Fig. 3A, the control mechanism in- 
duces windows of regular dynamics for intermediate dispersal distances. 
The control is least effective for very large and very low dispersal ranges. 
Similar results hold for the pulse control method. While for large dispersal 
distances control can often still be achieved if the control magnitude y is 
big enough, control is impossible for very small dispersal distances. In these 
cases, our numerical simulations suggest that not even high values of y are 
sufficient for control. For example, using the same demographic parameters 
as in Fig. 1 for the local populations but choosing D so that the chance of 
dispersing over more than three neighbouring patches is less than OS%, we 
were unable to find combinations of y, p, and K for either control 
mechanism which lead to a change in the chaotic dynamics exhibited by’ 
such a metapopulation. Thus, it seems that the control methods proposed 
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Figure 4. (Continued). 

here only work for systems that are sufficiently connected, i.e. in which 
interactions between local populations occur over a sufficiently wide range. 

The windows of regular dynamics induced by the control are larger if the 
control is applied only to marginal patches (Fig. 3B) than when it is applied 
also to patches lying in the center of the metapopulation (Fig. 30. This 
reiterates what was said earlier about the influence of the distribution of 
the controlled patches on the effectiveness of the control. The phenomenon 
is again apparent in Fig. 4, where the control magnitude y was used as 
bifurcation parameter. If only marginal patches are used for the control, it 
works for larger ranges and for lower values of y than if the control is also 
applied to central patches. In addition, control altogether ceases to be 
effective in the scenarios considered in Figs. 3 and 4 if too many central 
patches are used for control. For example, even very high control magni- 
tudes y are ineffective if the control is applied to the central patches 8-32, 
and a corresponding bifurcation diagram for the dispersal distance would 
be very similar to the one shown in Fig. 3A for an uncontrolled metapopu- 
lation. 

Based on extensive numerical work, we believe that the illustrative 
examples of this section show general features of the behaviour of our 
model. However, we are unable to derive any analytical results, and so must 
urge some caution in interpreting our results until further numerical or 
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analytical work is forthcoming. We hope that the results presented here will 
inspire others to carry out some of these extensions. 

4. Discussion. The influence of spatial structure on ecological dynamics 
has become a focus of interest in recent years. Spatial heterogeneity can 
have profound effects on extinction probabilities and on the complexity of 
population dynamics. While many researchers have argued that dispersal 
between local populations can simplify population dynamics (McCallum, 
1992; Hastings, 1993; Gyllenberg, 1993; Stone, 1993; Ruxton, 1994; Doebeli, 
1995a; Lloyd, 19951, the addition of spatial extension increases the dimen- 
sionality of population dynamic models, which by itself may lead to new 
levels of complexity, as exemplified by the phenomenon of spatial chaos 
(Chow and Mallet-Paret 1995). 

When faced with complexity, one can try to use the very properties of 
chaos to control the dynamics and elicit different types of regular behaviour 
that are present “behind the scenes” set by the chaotic attractor (Shinbrot 
et al., 1993). The most widely used method to control chaos is that proposed 
by Ott et al. (1990). It works by slightly adjusting system parameters 
according to a rule which has to be extracted from information about the 
dynamics of the system. For this reason, the method is difficult to apply in 
systems with many degrees of freedom and high-dimensional chaotic attrac- 
tors. In particular, it is not clear how to apply this method to control spatial 
chaos. Some progress has been made (Sepulchre and Baboyantz, 1993; 
Aranson et al., 1994; Astakhov et al., 1995; Brayman et al., 1995), but chaos 
in chains of coupled difference equations of the type considered in this 
paper was only controlled for systems with very low spatial connectance, i.e. 
with a very small range of interactions between the spatially separated 
oscillators (Astakhov et al., 1995). 

Here, we proposed a different method to control chaos in metapopula- 
tions with long-range dispersal. Our method is a generalization of the 
control mechanism proposed by Giiemez and Matias (1993) for single 
difference equations. The method has previously been applied to systems of 
coupled equations by Sole and MenCndez de la Prida (1995), but in a more 
restrictive way (only one equation was controlled), and in systems with 
much lower dimensions than the ones considered here. 

The method of Giiemez and Matias (1993) differs from that of Ott et al. 
(1990) in that the adjustments are made to the dynamic variables them- 
selves (the population densities in our case) rather than to system parame- 
ters. However, this is not the main difference, as variants of the method of 
Ott et al. (1990) also used adjustments to dynamic variables (Lima and 
Pettini, 1993). The main difference is that in the GiiCmez and Matias (1993) 
method, the adjustments are made rather indiscriminately and without 
detailed information about the dynamics of the system. 
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Thus, in the pulse control method that we applied to the metapopulation 
model described in section 2, we changed the local population size in a 
subset of all patches by a fixed proportion and at regular time intervals. In 
the wave control method, local population sizes are changed in every 
generation, but the magnitude of the adjustment varies according to a 
sinusoidal curve. Neither method requires knowledge about the dynam- 
ics of the system, and both methods work well over a wide range of 
parameters. 

The effectiveness of the control methods depends on the size of the 
adjustments as well as on the proportion and distribution of the controlled 
patches in the metapopulation. Large pulses or wave amplitudes facilitate 
control, and the distribution of the control patches should not be too 
clumped in only one region of the metapopulation. The proportion of 
controlled patches should neither be too low nor, somewhat surprisingly, 
too high. In the transitional regions where control ceases to be effective, 
interesting dynamic phenomena such as intermittent chaos can be observed 
(Fig. 2A). 

The control mechanisms only work well in metapopulations in which 
dispersal distances are not very low. That is, they only work well if the 
connectance of the system is relatively high, and the interactions between 
local populations occur over a sufficiently wide range. Since the method of 
Ott et al. (1990) has been successfully applied to systems of coupled 
oscillators with interactions only between nearest neighbours, hence with a 
very low connectance (Asthakov et al., 1995), our theory therefore seems to 
neatly fill a gap in the theory of controlling spatial chaos. 

Of course, an important question is: How feasible is it to apply these 
methods to natural systems? It does not seem too unrealistic ecologically to 
change local population sizes in the way required, particularly for the pulse 
control. In fact, because the method does not require a detailed knowledge 
of the dynamics of the system but only an assessment of the current (local) 
population size, it is tempting to speculate that metapopulations with 
chaotic fluctuations can be controlled by altering population sizes in selec- 
tively chosen habitat patches. For control with a negative pulse y, a system 
manager would have to periodically harvest a fixed proportion of the local 
population in selected habitats. For positive y, pulse control would corre- 
spond to periodically adding individuals to local populations. This could be 
achieved if a system manager had an independent reservoir of individuals at 
his disposal. Regarding the wave control, an interesting possibility opens 
up: if local populations are disturbed cyclically by external factors such as 
seasonal changes in the climate in some areas of a metapopulation, but not 
in others, then this might lead from otherwise chaotic dynamics to more 
regular dynamics with smaller fluctuations. Possibly this applies to species 
which have a spatially extended range longitudinally, the part closest to the 
equator being less affected by seasonal fluctuations than the part closer to 
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the poles. Thus, natural wave control might be involved in controlling the 
dynamics of real populations and, to keep on speculating, it might be a 
reason why chaotic dynamics are rare in natural populations (I. Suirez, 
personal communication). 

We hope that the control methods proposed here will open up new 
perspectives on controlling spatial chaos in other areas as well, e.g. in 
physics, or in neurology, where high-dimensional systems of coupled oscilla- 
tors can be used to study brain dynamics, and where ideas of chaos control 
as a cognitive process have entered the literature (Sepulchre and 
Baboyantz, 1993; Sole and Menendez de la Prida, 1995). The metapopula- 
tion model we used is sufficiently general to have potential applications in 
these fields. However, for both the metapopulation model of Hastings and 
Higgins (1994) and for our control mechanisms, it remains to be seen how 
they behave when the spatial dimension is larger than 1. 

We thank Mats Gyllenberg for careful reading of the paper and for many 
helpful suggestions. 
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