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Summary

Microbial metabolism drives our planet’s
biogeochemistry and plays a central role in industrial
processes. Molecular profiling in bioreactors has
revealed that microbial community composition can
be highly variable while maintaining constant func-
tional performance. Furthermore, following perturba-
tion bioreactor performance typically recovers
rapidly, while community composition slowly returns
to its original state. Despite its practical relevance, we
still lack an understanding of the mechanisms
causing the discrepancy between functional and
compositional stability of microbial communities.
Using a mathematical model for microbial competi-
tion, as well as simulations of a model for a nitrifying
bioreactor, we explain these observations on grounds
of slow non-equilibrium dynamics eventually leading
to competitive exclusion. In the presence of several
competing strains, metabolic niches are rapidly occu-
pied by opportunistic populations, while subsequent
species turnover and the eventual dominance of top
competitors proceeds at a much slower rate. Hence,
functional redundancy causes a separation of the
time scales characterizing the functional and compo-
sitional stabilization of microbial communities. This
effect becomes stronger with increasing richness
because greater similarities between top competitors
lead to longer transient population dynamics.

Introduction

Microbial metabolism drives the biochemistry of virtually
all ecosystems and plays a central role in industrial pro-

cesses such as biofuel production and wastewater treat-
ment (Falkowski et al., 2008; Antolli and Liu, 2012). Thus,
understanding the mechanisms that shape the dynamics
and metabolic performance of microbial communities is of
great practical importance. Experiments with bioreactors
have shown that bioreactor performance can be constant
despite highly variable microbial communities (Wang
et al., 2011). For example, following functional stabiliza-
tion, methanogenic or nitrifying bioreactors can exhibit
species turnover for several more years (Fernández et al.,
1999; Wittebolle et al., 2008). In some cases non-
convergent community trajectories have been reproduced
across replicated experiments, suggesting that the under-
lying processes are deterministic (Ayarza et al., 2010;
Vanwonterghem et al., 2014). Even when communities
converge to a steady composition, recovery of community
composition following perturbation can take several
months. This is in contrast to metabolic throughput, which
recovers within a few days (Sundh et al., 2003; Gentile
et al., 2006). Fluctuations and the rate of stabilization of
microbial communities are thus multifaceted properties
that depend greatly on whether the focus is on metabolic
function or taxonomic composition. An improved under-
standing of these properties in microbial communities is
crucial for optimizing microbially driven industrial pro-
cesses and interpreting the response of ecosystems to
anthropogenic perturbations.

It has been hypothesized that functional redundancy
and non-equilibrium population dynamics within each
metabolic compartment could promote fast stabilization of
performance with slow convergence of community com-
position (Briones and Raskin, 2003). Here we show that
temporary population dynamics leading to an eventually
steady community composition via competitive exclusion
can indeed last much longer than the time required for the
stabilization of overall metabolic performance. We first
formalize our reasoning using a microbial community
model, in which multiple strains compete for a common
resource. The model illustrates in a simple way how taxo-
nomic community composition can vary almost indepen-
dently of the community’s metabolic performance. We
then construct a more realistic model of a nitrifying
bioreactor and use simulations to demonstrate the validity
of our arguments and their consistency with previous
experimental observations.
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Results and discussion

Competition for a common resource

Microbial community richness can be disproportionally
high compared with the metabolic complexity of
bioreactors, whereas the coexistence of metabolically
similar organisms has been contrasted to the competitive
exclusion principle (Hardin, 1960; Fernández et al., 1999;
Fernandez et al., 2000; Wittebolle et al., 2009). In the
case of a single limiting resource, Tilman’s (1982) com-
petition theory predicts that at equilibrium the only persist-
ing competitor will be the one that can survive at the
lowest resource concentration. However ecosystems can
be subject to long transient dynamics, i.e. temporary
population dynamics far from equilibrium, and conver-
gence to equilibrium might occur at much longer time
scales than assumed (Hastings, 2004). For example, slow
species turnover has been suggested to be responsible
for the perplexingly high diversity seen in many microbial
systems (Chesson, 2000) and, as we show here, can
explain the discrepancy between functional and taxo-
nomic stability in bioreactors.

To formalize our argument, we use a model for multiple
populations competing for the same limiting resource. We
focus on the transient dynamics eventually leading to
steady state, where resource input is balanced by micro-
bial consumption. The cell density of strain i, denoted by
Ni, as well as the resource concentration, denoted by R,
are described by the following differential equations:

dN
dt

N Ri
i i i i= ,β λΦ ( ) −[ ] (1)

dR
dt

f N Ro i i
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Here, fo is the constant resource supply rate, λi is the
decay rate of strain i in the absence of growth, Φi(R) is the
rate at which cells take up the resource as a function of R,
and βi is a biomass yield factor. We assume that Φi(R)
increases with R. For example, Φi(R) could be a Monod
function that increases linearly with R at low concentra-
tions but saturates at high concentrations, an assumption
often made in geobiological and bioengineering models
(Jin et al., 2013). The last term in Eq. 2 is a sum over all
strains accounting for resource depletion by microbial
metabolism.

The growth rate of strain i is positive whenever R is
greater than the threshold concentration, Ri

o , defined by
Φi i

o
i iR( ) = λ β . In general, the equilibrium of Eqs. 1 and 2

is characterized by the extinction of all but one strain,
namely the strain with the lowest survival threshold Ri

o . To
elucidate the transient dynamics preceding this competi-
tive exclusion, we consider the total cell density N Ni

i

= ∑
and the relative cell densities ηi = Ni/N. Using the

community-average growth kinetics (denoted Φ , βΦ and
λ), one can derive the dynamics

d
dt
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for the relative cell densities,

dN
dt

N= β λΦ −( ) (4)

for the total cell density N, and

dR
dt

f No= − Φ (5)

for the resource concentration R (details found in
Supporting Information). Here, the εi account for
deviations of strain i growth kinetics from the community
average. For example, if N is growing and εi is positive,
then strain i grows faster than average and thus increases
in relative abundance.

As the resource is depleted, weaker competitors decay
and the average growth kinetics are determined by a few
remaining competitors of similar efficiency, for which the
deviations εi from the average become very small
(εi << 1). Hence, while the dynamics of N and R are deter-
mined by the community-average growth kinetics (Eqs. 4
and 5), the relative cell densities are slowed down by the
factors εi. This means that while metabolic niches are
quickly filled, establishing a high rate of resource uptake,
some of the competing populations can coexist during
prolonged transition periods until eventual competitive
exclusion. In agreement with these predictions, Gentile
and colleagues (2006) report a quick functional stabiliza-
tion and long transient periods in community composition
following mechanical shock, and Vanwonterghem and
colleagues (2014) report a gradually decreasing richness
in anaerobic digesters over the course of several months
following inoculation.

The probability of similar strains being present in a
random inoculum, or a microbial community in general,
increases with the number of strains. In particular, the
expected dissimilarity between top competitors decreases
with increasing community richness. The underlying
assumption is that growth kinetic parameters are bound
within some natural finite range. Hence, one should
expect longer transient dynamics of competitive exclusion
and slower convergence to a steady community compo-
sition at higher inoculum richness.

It has been previously hypothesized that as richness
increases, the variability of ecosystem functions
decreases, whereas the variability of individual popula-
tions increases (Tilman, 1996; Lehman and Tilman, 2000;
Loreau et al., 2001). The proposed mechanisms typically
involve stochastic fluctuations of independent popula-
tions, so that the total community biomass and functional
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performance become more stable when more populations
contribute to them. This statistical inevitability (Doak et al.,
1998), which has been criticized on grounds of
interspecific interactions (Tilman et al., 1998), differs fun-
damentally from the deterministic mechanisms explored
here. Namely, competition between strains leads to a slow
decay of weaker competitors, which is compensated by
the growth of other populations that stabilize overall func-
tional performance.

Bioreactors as model systems

The above competition model explains how populations
occupying a common metabolic niche can, in principle,
undergo long transient periods of coexistence. The actual
duration and nature of these transients depend on the
similarity between competing strains, as well as their
typical intrinsic growth kinetics. To test the relevance of
our predictions to realistic microbial communities, we
examined a separate numerical model for a nitrifying
bioreactor (Wittebolle et al., 2008). Apart from their prac-
tical relevance to industrial processes such as sewage
treatment and biofuel production (Antolli and Liu, 2012),
bioreactors are also ideal model systems for understand-
ing microbial ecology and processes shaping microbial
community structure (Fernandez et al., 2000; Graham
et al., 2007; Vanwonterghem et al., 2014). The bioreactor
considered here is a flow-through chemostat continuously
fed with ammonium ( NH4

+ ), which is aerobically oxidized
to nitrate ( NO3

−) in a two-step process. Oxidation occurs in
a microbial community that consists of chemoautotrophic
ammonium-oxidizing bacteria (AOB), which transform
ammonium to nitrite ( NO2

−), and chemoautotrophic nitrite-
oxidizing bacteria (NOB), which transform nitrite to nitrate.
Nitrate is exported from the bioreactor as part of a con-
tinuous outflow through a filter membrane that retains
cells within the bioreactor. The substrate feed rate and the
hydraulic dilution rate are kept constant and in line with
previous bioreactor experiments (Wittebolle et al., 2008),
allowing the establishment of a steady metabolic through-
put following an initial start-up period.

The bioreactor’s microbial community is modelled
using differential equations for the cell population densi-
ties and the ambient ammonium, nitrite and nitrate con-
centrations. These metabolites are subject to microbial
production and depletion, as well as physical addition
and removal from the bioreactor. The metabolic activity
of individual cells is determined using flux balance analy-
sis (FBA), a widely used framework in cell-metabolic
modelling (Orth et al., 2010). In FBA, the chemical state
of cells is assumed to be steady, leading to
stoichiometric constraints that need to be satisfied for
any particular combination of intracellular reaction rates.
These rates are assumed to be regulated by the cell in

such a way that some objective function, commonly
associated with biomass production, is maximized
subject to additional constraints on substrate uptake
rates (Feist and Palsson, 2010). In our case, the
optimized biosynthesis rate is translated to a growth rate
by dividing by the cell mass. Ammonium and nitrite
uptake rates are limited by substrate concentrations in a
Monod-like fashion, thus constraining the achievable
growth rates depending on the bioreactor’s chemical
state (Mahadevan et al., 2002; Harcombe et al., 2014).

The assumption of cells maximizing biosynthesis,
subject to environmental and physiological constraints, is
rooted in the idea that evolution has shaped regulatory
mechanisms to induce maximum growth whenever pos-
sible (Burgard and Maranas, 2003; Harcombe et al.,
2013). This assumption is less valid for genetically engi-
neered organisms or those exposed to environments that
are radically different from the environments that shaped
their evolution, and other objectives such as ATP produc-
tion or metabolic efficiency have been proposed (Segrè
et al., 2002; Gianchandani et al., 2008). Biosynthesis has
been experimentally verified as an objective for, among
others, Saccharomyces cerevisiae, Escherichia coli and
Nitrosomonas europaea (Duarte et al., 2004; Feist and
Palsson, 2010; Perez-Garcia et al., 2014). Despite its limi-
tations, FBA with maximization of growth has greatly con-
tributed to the understanding of several single-cell
metabolic networks as well as metabolic interactions
between cells (Klitgord and Segrè, 2010; Orth et al., 2010;
Freilich et al., 2011; Chiu et al., 2014). One advantage of
FBA models over full biochemical cell models is their
independence of intracellular kinetics and gene regula-
tion, which limits the number of required parameters to
stoichiometric coefficients and uptake kinetics. Recent
work has shown that FBA-based models with maximiza-
tion of growth can accurately predict microbial community
dynamics (Meadows et al., 2010; Chiu et al., 2014;
Harcombe et al., 2014; Louca and Doebeli, 2015).

Our bioreactor model comprises multiple AOB and NOB
strains, which are constructed by randomly choosing
several cell parameters around those of two template
AOB and NOB models. The AOB and NOB templates
were calibrated and validated beforehand using data from
previous bioreactor experiments (Fig. 1; see Experimen-
tal Procedures for details). Because metabolites can be
depleted or produced by several cells, the environmental
metabolite pool mediates the metabolic interactions
between cells (Schink and Stams, 2006). For example,
AOB deplete ammonium from their environment, render-
ing it a limiting resource that mediates competition
between AOB strains. The excretion of nitrite as a
by-product, in turn, enables the growth of nitrite-limited
NOB. The metabolic optimization of individual cells striv-
ing for maximal growth, while modifying their environment,
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thus leads to non-trivial community dynamics that can
include cooperation, competition and extinction.

Bioreactor community dynamics

Following inoculation of the bioreactor, two phases can
generally be distinguished (Fig. 2): Initially, the concentra-

tion of inflowing ammonium increases until AOB popula-
tions have grown to sufficient densities to balance
ammonium supply by ammonium consumption. The accu-
mulation of nitrite as an AOB waste product, in turn, trig-
gers the growth of NOB populations until nitrite production
is eventually balanced by nitrite consumption. This initial
startup phase is dominated by fast-growing opportunists

Fig. 1. Calibration and validation of the template AOB and NOB cell models using data from experiments with a nitrifying batch-fed bioreactor
(A). Ammonium ( NH4

+ ) was added at the beginning of the experiment, and was sequentially oxidized to nitrite ( NO2
− ) and nitrate ( NO3

− ) by a
growing nitrifier community. (B) and (C): Ammonium (B) and nitrate (C) concentration time series data (dots), compared with the calibrated
model (continuous lines). (D): AOB and NOB cell densities over time, as predicted by the model. (E): Nitrite concentration over time, as
predicted by the model. Experimental data from de Boer and Laanbroek (1989). Note that while the template cell models were calibrated using
batch-bioreactor experiments, for our subsequent analysis we consider continuously fed flow-through bioreactors because these can support
metabolically active microbial communities at steady state.

Fig. 2. (A) Simulated cell densities over time in the ammonium-fed nitrifying membrane bioreactor, inoculated with 100 random strains (AOB
in variations of red, NOB in variations of blue). (B) Corresponding total cell densities per functional group (AOB or NOB). (C) Corresponding
ammonium ( NH4

+ ), nitrite ( NO2
− ) and nitrate ( NO3

− ) concentrations. (D) Corresponding community-wide ammonium and nitrite uptake rates. (E,
F): Bray–Curtis dissimilarity of the community to the long-term steady state, following inoculation with 20 (E) or 100 (F) random strains. Shown
as a probability distribution over 100 random simulations (colours correspond to centiles). Notice the faster rate of convergence to steady state
(i.e. resilience) in (E) compared to (F). The two intervals on the top of figures (A, C, E) indicate rough start-up and saturation phases
respectively.
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that benefit from an excess of substrates and little com-
petition. The duration of this phase is mainly determined
by the hydraulic renewal rate, ammonium supply rate and
bacterial growth rates, and the duration predicted by our
model (roughly 3 weeks) is in line with typical nitrifying
bioreactor experiments (Dumont et al., 2009; Martens-
Habbena et al., 2009).

As ammonium and nitrite consumption increase, their
concentrations decrease to near or below the survival
thresholds for an increasing number of strains (Fig. 2C).
This second saturation phase is characterized by low and
relatively stable substrate concentrations, stagnation of
growth, a gradual extinction of less competitive strains
and a long coexistence of similar top competitors
(Fig. 2A). The microbial community slowly converges to a
stable composition of decreased diversity in which each
metabolic niche is occupied by a single strain, with tran-
sient periods occasionally lasting up to several thousands
of days. A gradual decrease in diversity is expected
under the competitive exclusion principle of equilibrium
ecology (Hardin, 1960) and is consistent with similar
observations in previous bioreactor experiments
(Vanwonterghem et al., 2014). On the other hand, the
total cell densities of metabolically similar strains (e.g.
AOB) stabilize much faster and only vary weakly during
the saturation phase (Fig. 2B). Hence, each of the two
available metabolic niches is rapidly filled by several com-

peting and temporarily coexisting strains, which are only
slowly replaced by the top competitor.

These results show how transient dynamics of competi-
tive exclusion can lead to a separation of time scales
characterizing functional and compositional stabilization
of communities. This separation of time scales is also
expected to be reflected in the community’s response to
perturbations. Perturbations such as mechanical biofilm
removal (Gentile et al., 2006) or nutrient shocks (Sundh
et al., 2003) can alter the relative abundances of indi-
vidual clades or lead to a temporary collapse of the
community. Such a collapse would initiate a race for the
(re-)occupation of metabolic niches and a subsequent
saturation phase, analogous to the dynamics following
inoculation. For example, Gentile and colleagues (2006)
observed that after the shearing of biofilms inside a fluid-
ized bed reactor community composition recovered much
slower, i.e. it had lower resilience (Shade et al., 2012),
than the bioreactor’s performance.

Simulations of the bioreactor model including a strong
pulse perturbation, applied simultaneously to the entire
community, reproduced these observations (Fig. 3). The
modelled perturbation corresponds to an increased mor-
tality for 1 day, with a strength chosen randomly for each
strain and resulting in a temporary collapse of the com-
munity by several orders of magnitude. Consistent with
experimental observations, the bioreactor’s performance

Fig. 3. (A) Simulated cell densities over time in the ammonium-fed nitrifying membrane bioreactor, inoculated with 100 random strains (AOB
in variations of red, NOB in variations of blue). A strong perturbation during day 5000 (grey arrow) causes a temporary collapse of the
microbial community. (B) Corresponding total cell densities per functional group (AOB or NOB). (C) Corresponding ammonium ( NH4

+ ), nitrite
( NO2

− ) and nitrate ( NO3
− ) concentrations, at times near the perturbation. (D) Corresponding community-wide ammonium and nitrite uptake

rates, at times near the perturbation. (E, F) Bray–Curtis dissimilarity of the community to the state shortly prior to the perturbation, in
bioreactors inoculated with 20 (E) or 100 (F) random strains. Shown as a probability distribution over 100 random simulations (colours
correspond to centiles). Notice the greater resistance to perturbation and greater resilience in (E) compared to (F).
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quickly recovers within a few days to weeks (Fig. 3C and
D), whereas the community’s recovery to its original com-
position typically takes several months to years
(Fig. 3A,E,F). Metabolic niches are reoccupied rapidly
and concurrently with the bioreactor’s functional stabiliza-
tion (Fig. 3B); however, metabolic niches can be
temporarily shared by several coexisting strains. Non-
equilibrium processes, particularly following perturbation,
are frequently thought to maintain high diversity, for
example in rain forests (Connell, 1978) or phytoplankton
(Sommer, 1984). Furthermore, a meta-analysis by Shade
and colleagues (2012) found more studies reporting the
recovery of microbial community function than composi-
tion, following pulse perturbation.

As predicted above by our competition model, the dis-
crepancy between functional and taxonomic stability
should be stronger for communities with high richness
because the likelihood of two similar top competitors
increases, thus delaying competitive exclusion. Simula-
tions of bioreactors inoculated with different numbers of
random strains verify this prediction. For example, the
time until compositional convergence following inocula-
tion, i.e. reaching a 90% Bray–Curtis similarity to the
steady state (Legendre and Legendre, 1998), ranges from
roughly 600 days for 20 strains to 1300 days for 100
strains (median values, Fig. 2E and F). Moreover, richer
communities are expected to be more prone to temporary
changes in composition during perturbation because of a
greater reservoir of opportunistic strains that could tem-
porarily invade (Wittebolle et al., 2008). This is reflected in
our simulations, where a greater number of strains corre-
lates with a stronger change in community composition
following the pulse perturbation (Fig. 3E and F). The
insensitivity to disturbance is known in ecology as resist-
ance and is, together with resilience, a common measure
of community stability (Shade et al., 2012). Our work sug-
gests that microbial communities with higher functional
redundancy have lower resilience and lower resistance to
pulse perturbation in terms of taxonomic composition.

Variable does not mean unstable

Previous bioreactor experiments have revealed variable
community composition despite stable bioreactor perfor-
mance over hundreds of days following inoculation
(Fernández et al., 1999; Zumstein et al., 2000; Wittebolle
et al., 2008; Vanwonterghem et al., 2014), whereas others
have reported convergence to steady compositions within
a few months (Xing et al., 1997; Gentile et al., 2006;
McGuinness et al., 2006). Fluctuating community compo-
sitions are often interpreted as unstable, non-convergent
or even chaotic. However, the observed dynamics may be
mere transients of slowly converging communities. Typical
richness in bioreactors can range from hundreds to thou-

sands of operational taxonomic units (OTUs, a species
analogue based on rDNA similarity) (Stackebrandt et al.,
2002; Kim et al., 2013; Vanwonterghem et al., 2014). As
shown here, at these richness scales transient dynamics of
competitive exclusion can last several years. Much longer
operation times might thus be needed to actually observe
an eventual community convergence in typical bioreactors.
However, at these time scales other destabilizing pro-
cesses, such as the invasion of new strains introduced by
contamination, could prevent community convergence.

Model limitations

The simple models considered in this paper focus on
generic ingredients of microbial ecosystems, namely
substrate-limited growth and competition, stoichiometric
constraints on coexisting pathways, as well as physical
substrate repletion and waste removal (e.g. in continuous-
flow bioreactors). In particular, we have assumed that
microbial growth increases with increasing substrate con-
centrations, thus ignoring the possibility of substrate inhi-
bition. For example, substrate inhibition can occur during
nitrification by excess ammonia and nitrous acid
(Anthonisen et al., 1976), resulting in reduced bioreactor
performance (Sheintuch et al., 1995). Similarly, growth
may also be subject to product inhibition, e.g. when the
partial pressure of accumulating waste products renders a
pathway unfavourable (Kaspar and Wuhrmann, 1977).
Accurately modelling specific industrial setups may thus
require a consideration of more complicated kinetics, e.g.
including substrate and product inhibition. Our main point
is that long transient dynamics can emerge even in the
simple cases considered here, acknowledging that more
complex communities are likely subject to further
destabilizing mechanisms (see below).

Alternative destabilizing factors

Transient dynamics of competitive exclusion provide a
simple explanation for the discrepancy between functional
and taxonomic stability of microbial communities, and our
simulations underline the relevance of these processes at
least to typical bioreactor setups. However, other mecha-
nisms likely contribute to a long-term variability of com-
munity composition. For example, time lags associated
with the degradation of organic matter, such as cellulose
hydrolysis in anaerobic digesters (Vanwonterghem et al.,
2014), can result in slow changes of the metabolic land-
scape and optimal electron flow, in turn driving adaptive
changes in community composition (Fernández et al.,
1999). More complicated non-sequential pathways, ubiq-
uitous in organic carbon catabolism, could also lead to
positive feedback loops that further destabilize community
dynamics. Furthermore, in contrast to well-controlled
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bioreactors, many natural ecosystems are subject to
intense environmental variation that can drive adaptation
and succession in microbial communities. For example,
annual deep-water renewal in a seasonally anoxic fjord
has been shown to cause significant changes in microbial
community structure (Zaikova et al., 2010).

We emphasize that mechanisms that destabilize com-
munity composition need not necessarily destabilize com-
munity function. For example, in open systems such as
wastewater treatment plants (Wang et al., 2011) occa-
sional invasion by novel competitors could drive species
turnover without significantly affecting ecosystem func-
tioning; however, this scenario is unlikely in bioreactors
with a sterile feed (Vanwonterghem et al., 2014). Similarly,
repeated adaptation of bacteriophages to dominant hosts
(‘killing the winner’ dynamics) has been shown to sustain
bacterial diversity and drive continuous species turnover
(Thingstad, 2000; Shapiro and Kushmaro, 2011). Collaps-
ing populations could be replaced by less susceptible but
functionally similar populations that ensure the overall
stability of biochemical fluxes.

Reciprocally, negative feedback mechanisms stabiliz-
ing biochemical fluxes may only weakly affect community
composition. For example, substrate built-up can promote
the growth of functional groups benefiting from the
underutilized resource, in turn counteracting the pro-
cesses causing substrate built-up. This stabilizing mecha-
nism, perhaps comparable with La Châtelier’s principle of
an ‘opposing force’ (Schneider, 2004), a priori acts on
functional groups rather than taxonomy.

Towards a pathway-centric microbial ecology

Environmental rDNA marker gene profiling has become a
standard approach in microbial ecology for describing
community composition in terms of OTUs (Wittebolle
et al., 2008; Gilbert et al., 2010). However, single
prokaryotic OTUs can comprise several distinct ecotypes
(Welch et al., 2002; Kashtan et al., 2014) and, recipro-
cally, ecologically important pathways such as nitrogen
fixation can exhibit non-monophyletic distributions across
distant clades (Raymond et al., 2004; Frigaard et al.,
2006). In fact, environmental conditions and ecological
function often show a stronger correlation to particular
metabolic pathways or even individual genes, than to the
presence or absence of particular clades (Ofiţeru et al.,
2010; Burke et al., 2011; Raes et al., 2011). Consistent
with this, as we have shown here, compositional stability
can be independent from functional stability while key
genes (for example ammonia monooxygenase, present in
AOB) remain synchronized with the community’s perfor-
mance. Hence, prokaryotic OTUs should be questioned
as an ecologically relevant unit altogether (Gevers et al.,
2005; Ward et al., 2007; Doolittle and Zhaxybayeva,

2010). Microbial ecology and biogeography might be best
understood using function-centric theories in which indi-
vidual genes, operons or pathways are considered as
basic reproductive and functional units, particularly under
conditions where metabolic functions define the microbial
niche space (Dumont et al., 2009; Reed et al., 2014).
Accordingly, metagenomic, metatranscriptomic and
metaproteomic profiling would be more suitable than
marker genes for monitoring or predicting fluctuations of
community function (Ward et al., 2007; Doolittle and
Zhaxybayeva, 2010; Hawley et al., 2014).

Conclusions

Convergence of microbial community composition is a
gradual process that can last much longer than typical
bioreactor experiments and environmental surveys. Tran-
sient dynamics of competitive exclusion explain why micro-
bial communities can remain variable long after inoculation
or perturbation, while exhibiting high functional stability.
The correct interpretation of observed community dynam-
ics in bioreactors and natural ecosystems thus requires a
proper consideration of the involved time scales. Previous
work has highlighted the general mismatch between the
duration of typical experiments and the time scales
assumed by conventional steady-state ecological theories
(Hastings, 2004), and our work demonstrates some of the
implications of this mismatch. Fluctuations in natural and
less controlled microbial communities likely result from
several destabilizing processes; however, the effects of
these processes could be augmented by transient dynam-
ics of competitive exclusion.

Furthermore, less resilient and more flexible communi-
ties need not imply a compromised functional stability, and
previous experiments have indeed indicated a positive
correlation between flexible community structure and
stable performance (Fernandez et al., 2000). Several com-
peting strains can rapidly and concurrently fill a metabolic
niche when opportunities arise, while slowly replacing
each other and maintaining constant performance during
saturation. The time required for convergence or recovery
of community composition correlates positively with func-
tional redundancy because more competitors are likely to
have similar efficiencies under substrate limitation.

The extreme case in which each functional group con-
sists of equal competitors is comparable with the
so-called emergent group theory in ecology, according to
which assembly within each group is subject to neutral
dynamics (Hubbell, 2005; Hérault, 2007). In that limit,
transient periods of competitive exclusion can be
extremely long, whereas community composition appears
dissociated from environmental conditions and driven by
purely stochastic factors. Although exact neutrality is an
extreme idealization, some natural communities may
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indeed include functional groups consisting of almost-
equal competitors. For example, previous work on a
wastewater treatment plant found that fluctuations within
the group of ammonia-oxidizing bacteria, as well as within
the heterotrophic community, were predominantly
explained by neutral processes rather than environmental
factors (Ofiţeru et al., 2010). Similarly, a global study of
desert microbial communities by Caruso and colleagues
(2011) found that climatic effects were detectable at the
whole community level, but became undetectable when
restricted to variations within the photosynthetic or
heterotrophic groups. Frossard and colleagues (2012)
found that spatiotemporal variations of microbial commu-
nity structure in stream catchments were best described
by a neutral assembly model, whereas potential activities
of several carbon-, nitrogen- and phosphorus-acquiring
enzymes showed clear seasonal patterns. This discrep-
ancy between potential enzyme activities and the
composition of their host communities indicates high func-
tional redundancy and a decoupling between community
function and taxonomy. Similarly, Yin and colleagues
(2000) showed significant functional redundancy in
soil microbial communities by measuring population
responses to enrichment with individual carbon sources.
However, it is unclear whether all detected OTUs were
active prior to the enrichment, and at any point in time a
significant fraction of functionally similar clades may have
only been present at low densities (Shade et al., 2014).
Furthermore, subtle partitioning along additional
non-functional axes such as moisture or pH may create
micro-niches that enable the long-term coexistence of
functionally similar populations, particularly in spatially or
temporally heterogenous environments. For example, the
coexistence of hundreds of sub-populations of the marine
cyanobacterium Prochlorococcus is likely enabled by
subtle niche differentiation such as adaptations to differ-
ent nutrient availabilities (Kashtan et al., 2014). The role
of neutrality in natural microbial communities and its
proper reconciliation with niche theory remain controver-
sial. Nevertheless, our work shows that approximate
neutrality within ecological niches can explain several
patterns of microbial community assembly in engineered
environments and should also be considered when
interpreting the dynamics of natural microbial
communities.

Experimental procedures

Computational framework

Model calibration, simulations and statistical analysis were
performed using MCM (Microbial Community Modeler), a
mathematical and computational framework that we devel-
oped for modelling microbial ecosystems (Louca and
Doebeli, 2015, in press). MCM combines FBA-based cell

models with a dynamical environment that influences, and is
influenced by, microbial metabolism. The combination of FBA
with a varying environmental metabolite pool is known as
dynamic flux balance analysis (DFBA) (Mahadevan et al.,
2002; Chiu et al., 2014; Harcombe et al., 2014) and has been
shown to be a promising approach to microbial ecological
modelling (Meadows et al., 2010; Chiu et al., 2014;
Harcombe et al., 2014; Louca and Doebeli, 2015, in press).
MCM can accommodate microbial community models with
arbitrary environmental variables and metabolite exchange
kinetics. For example, environmental variables may be sto-
chastic processes (e.g. representing climate fluctuations), or
specified using measured data (e.g. pH in bioreactor experi-
ments). Metabolite uptake and export rate limits can be arbi-
trary functions of metabolite concentrations or environmental
variables. Similar interdependencies are possible for reaction
rate limits, thus allowing the inclusion of inhibitory or regula-
tory mechanisms (Covert et al., 2008). Metabolite concentra-
tions can be explicitly specified, e.g. using measured time
series, or depend dynamically on microbial export and other
external fluxes.

MCM keeps track of a multitude of output variables such as
cell concentrations, reaction rates, metabolite concentrations
and metabolite exchange rates. Model predictions can then
be compared with time series from experiments or environ-
mental surveys, such as rate measurements, chemical pro-
files or optical cell densities. Reciprocally, time series data
can be used to automatically calibrate unknown model
parameters, e.g. using least-squares fitting or maximum like-
lihood estimation (e.g. Fig. 1, see details below). Because
MCM can calibrate unknown measurement units, raw
uncalibrated data (e.g. optical cell densities with no
calibration to colony-forming units) can also be used. MCM
was recently validated using laboratory experiments with
bacterial communities (Louca and Doebeli, 2015, in press).
MCM is Open Source and available at http://
www.zoology.ubc.ca/MCM.

Construction of the cell models

The metabolism of each cell was modelled using FBA with
optimization of biomass synthesis (Orth et al., 2010). The
cell-internal reaction networks of the AOB and NOB are
based on the core metabolic models published by Poughon
and colleagues (2001) and Perez-Garcia and colleagues
(2014). More precisely, the biomass synthesis functions of
both cell types are taken from Perez-Garcia and colleagues
(2014), the energy metabolism of AOB is adopted from
Perez-Garcia and colleagues (2014) and the energy metabo-
lism of NOB is adopted from Poughon and colleagues (2001).
Assimilatory nitrite reduction to ammonium, required for
biomass synthesis, was added to NOB (Starkenburg et al.,
2006). The constructed AOB and NOB models are comprised
of 16 and 11 reactions respectively (see Supporting Informa-
tion S2 for details). The nitrogen substrate half-saturation
constants were set to 26 μM NH3 for the AOB template
according to Suzuki and colleagues (1974) and to 229 μM
NO2

− for the NOB template according to Remacle and De
Leval (1978). Cell masses were set to 3 × 10−13 g dW cell−1 for
the AOB and 4 × 10−13 g dW cell−1 for the NOB, according to
Keen and Prosser (1987).

8 S. Louca and M. Doebeli

© 2015 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology

1870 S. Louca and M. Doebeli

VC 2015 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 18, 1863–1874



Calibration of the template cell models

The maximum cell-specific substrate uptake rates for the
AOB and NOB templates (Vmax NH, 4

+ and V
max NO, 3

− respectively)
were calibrated using time series from a previous experiment
with an ammonium-batch-fed nitrifying bioreactor by de Boer
and Laanbroek (1989), inoculated with strains of the AOB
Nitrosospira and NOB Nitrobacter genera. For the calibration,
our bioreactor model was adjusted to de Boer and
Laanbroek’s experiment (Fig. 1A): The initial ammonium con-
centration was set to 0.916 mM, nitrite and nitrate were ini-
tially absent, the pH was set to the reported profile and
oxygen was assumed to be non-limiting.

We used the reported concentration profiles of the gradually
depleted ammonium (Fig. 1B) and produced nitrate (Fig. 1C)
to calibrate V

max NH, 4
+ and V

max NO, 3
− via maximum likelihood

estimation (Eliason, 1993). This approach estimates unknown
parameters by maximizing the likelihood of observing the
available data, given a particular candidate choice of param-
eter values. Maximum likelihood estimation is widely used in
statistical inference such as multilinear regression, computa-
tional phylogenetics and modelling in physics (Lyons, 1986). In
our case, the likelihood of the data was calculated on the basis
of a mixed deterministic-stochastic structure, in which the
deterministic part is given by the microbial community model,
and errors are assumed to be normally distributed. The likeli-
hood was maximized using a subspace-searching simplex
algorithm (SBPLX; Johnson, 2014), which uses repeated
simulations and gradual exploration of parameter space and is
integrated into MCM (Louca and Doebeli, 2015, in press). To
reduce the possibility of only reaching a local maximum,
fitting was repeated 100 times using random initial parameter
values and the best fit among all 100 runs was used. While
some fitting runs reached alternative local maxima, the best
overall fit was reached in most cases. This procedure yielded
the fitted values Vmax NH mol NH cell d,

13
3

4
= 6 48 10+ × −. and

V
max NO

mol NO cell d
, 2

13
2= 7 31 10−

− −×. , which are consistent
with the literature (Prosser, 2005).

Nitrifying membrane bioreactor model

Using the calibrated AOB and NOB template cell models, we
constructed a model of an ammonium-fed nitrifying mem-
brane bioreactor similar to the one described by Wittebolle
and colleagues (2008). The hydraulic turnover rate for all
metabolites was 0.672 per day, ammonium input was
7.14 mM per day and pH was fixed to 7.4. The input medium
was assumed to be sterile and to contain micronutrients in
sufficient amounts for autotrophic growth via nitrification
(Wittebolle et al., 2008; Dumont et al., 2009). The bioreactor
medium was assumed to be well mixed. Microbial communi-
ties started with an equal number of AOB and NOB strains,
each with an initial density of 107 cells L−1. Cell death was
modelled as exponential decay (see Supporting Information
S2 for details).

Each strain was a random variation of the calibrated tem-
plate cell models, with physiological parameters chosen as
follows: Substrate uptake kinetic parameters, i.e. the
maximum cell-specific nitrogen substrate uptake rates (Vmax)
and substrate affinities (α; Aksnes and Cao, 2011), were
randomly and uniformly chosen within an interval ranging an
order of magnitude above and an order of magnitude below

the template values. To account for the typically assumed
trade-off between Vmax and α, these parameters were multi-
plied by a factor κ and (1 − κ), respectively, where κ was
chosen randomly between 0 and 1 for each strain (Smith
et al., 2009). Cell life times were randomly chosen within
50–100 days for each strain according to typical nitrifier
decay rates (Alleman and Preston, 1991).

Perturbations were modelled as a temporary increase in
mortality rates, such that after 1 day each cell population
declines by some random factor, chosen log-uniformly and
independently for each strain within the interval [1, 1012].

Statistics of community convergence

The distance between two community compositions was
expressed using the Bray–Curtis dissimilarity, which is well
established in the ecological literature (Legendre and
Legendre, 1998). The maximum dissimilarity between any
two communities is 100%, whereas identical communities
have a dissimilarity of 0%. The convergence of the bioreactor
community was examined by calculating its dissimilarity to
the steady composition established after a long time. This
dissimilarity curve is typically decreasing in time because
communities eventually converge to a steady composition in
which each metabolic niche is occupied by a single strain. A
steeper curve implies a faster convergence. Following inocu-
lation, the dissimilarity curve depends on the particular
strains present in the community, which are chosen randomly
for each simulation. The resulting probability distribution of
the dissimilarity curves (Figs 2E,F and 3E,F) was estimated
using 100 repeated random simulations of the model.
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