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UPDATING GILLESPIE WITH CONTROLLED CHAOS

In a seminal paper Gillespie (1977) showed that the distribution of offspring
numbers in a variable environment is crucial for the outcome of evolution. More
precisely, ‘‘Natural selection . . . works in such a way that increasing the variance
in offspring number of a genotype will decrease its fitness’’ (Gillespie 1977, p.
1013). It follows that if two genotypes have the same average number of offspring,
then the one with the lower variance of offspring numbers will increase in fre-
quency. In the present note I combine this line of thinking with chaos theory and
show that the course of evolution can also be determined by higher moments of
the distribution of offspring numbers. Natural selection acting on higher moments
can cause a population to evolve from chaos to a stable equilibrium.

Recently, Shinbrot et al. (1993) showed how small perturbations in chaotic
systems can be used to elicit many types of regular dynamics. I have shown
(Doebeli 1993) how controlling chaos can work in simple ecological models by
slightly adjusting the intrinsic growth rate of a population. Under some circum-
stances a controlled phenotype has a selective advantage over an uncontrolled
phenotype with the same nominal parameter values, and invasion of a controlled
mutant into an uncontrolled resident transforms a chaotic population into one
with a stable equilibrium. This is possible if the mutant has a higher average
growth rate than the resident and hence a higher average number of offspring.

Below I recall the ideas of controlled chaos using a different model and ad-
justing a different demographic parameter. It turns out that in the system consid-
ered, a controlled mutant can always invade an uncontrolled resident. But now
the controlled phenotype typically has a slightly lower average number of off-
spring. Thus Gillespie’s evolutionary principle must be at work, although in this
setting the variance of offspring numbers is not due to stochasticity in the environ-
ment but to fluctuations caused by density dependence. Indeed, in many cases
the mutant has a lower variance of offspring numbers, which confirms Gillespie’s
assertions. However, in other cases the variance of the mutant is larger, so that
on the basis of Gillespie’s argument invasibility is counterintuitive. In these cases,
invasion is possible because of natural selection acting on the higher moments of
the distribution of offspring numbers. Even though the average offspring number
is lower and the variance is higher, the mutant’s distribution is more skewed to
the right than that of the resident, so that the geometric mean fitness of the mutant
is higher. The difference in skewness is caused by the control mechanism of the
mutant.

The present note thus combines two observations. First, higher moments of
the distribution of offspring numbers can determine evolutionary processes. Sec-
ond, this effect enables phenotypes that control their chaotic dynamics to invade
uncontrolled residents and to transform chaos into a stable equilibrium.
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CONTROLLING CHAOS

Consider a population with discrete generations that is modeled by the differ-
ence equation
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This equation was introduced by Maynard Smith and Slatkin (1973) and consid-
ered by Bellows (1981) to be the most generally applicable because of its mathe-
matical flexibility. In equation (1), x, denotes the population density in generation
t, and A, a, and b are demographic parameters: A > 1 is the intrinsic growth rate,
a > 0 measures how well the individuals can cope with the environment, and b
= | describes the type of competition that leads to density dependence (b ~ 1
corresponds to contest, » > 1 to scramble competition). What determines the
dynamics of the population is the slope of f at the equilibrium x*. From f(x*) =
x*, x* > 0, one sees that
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If the modulus of this derivative is less than one, the equilibrium x* is stable. As
it increases above one, the system displays the familiar period-doubling route to
chaos (May and Oster 1976). The parameter a does not influence the dynamics.
It affects only the equilibrium density, which corresponds to the carrying capacity
of the population.

Suppose now that the parameters A and b have values coding for chaos, that
is, such that the modulus of equation (3) is large enough. Suppose further that,
given a nominal value g, we can adjust the parameter a by small amounts in
each generation, so that the ability to cope with the environment, and hence the
carrying capacity, changes slightly. We then write x,,, = f(x,, @) to stress the
dependence of the system on the parameter a. If |x, — x*| is small, that is, if
the system is close to the equilibrium in some generation ¢, then, for values q,
close to the nominal value q;, one can approximate the dynamics of the system
linearly:

st =L -+ Lt - @

Now we assume that we can control the change in the parameter a by adjusting
it linearly according to the density
a,—ay=c-(x —x*), 5)

where ¢ is a constant to be determined. Substituting equation (5) into equation
(4) we get
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If we choose ¢ such that the modulus of the expression in brackets is less than
one, the system will now asymptotically approach the equilibrium x*. Evaluating
the partial derivatives, we get the condition
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The optimal value for the control constant ¢ occurs when the modulus is zero,
and we obtain the equation
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In practice, we have to specify when to apply the control, that is, what it means
that |x, — x*| is small. Because the system is chaotic, given any € > 0, there will
be a generation ¢ for which |x, — x*| < e. Thus, in view of equation (5), in
principle, very small adjustments are enough to stabilize the system at x*. The
smaller we allow the adjustments to be, the longer it might take until the system
finally gets close enough to x*, but because of chaos it will eventually happen.

With a small alteration, the mechanism also makes sense as an adaptive strat-
egy applied by the individuals of a population to control the dynamics. For this we
have to imagine individuals that change their ability to cope with the environment
according to their density. It follows from equation (8) that c,, is negative (be-
cause the modulus of 1 — b [A—1/A] codes for chaos) and hence from equation
(5) that the adjustment of a consists of a decrease if x, > x* and of an increase
if x, < x*. Consequently (recall eq. [2]), the adaptation consists of a higher ability
to cope with the environment, and hence a higher carrying capacity, if the density
of the population in a given generation is above x* and of a lower carrying
capacity if the density is below x*. If this adaptation is to be displayed by a
population, the adjustments should occur according to equation (5), but they
should not depend on the fact that x, is very close to x*. Rather, the adjust-
ments should be made in all generations, but in order to be biologically reasonable
they should never be larger than a certain percentage, say 5%, of the nominal
value q,. It is easy to see that a population adapted in this way controls its own
dynamics and exhibits a stable equilibrium after an initial phase of fluctuating
densities.

®

INVASION OF CONTROLLING MUTANTS

Suppose there is a resident population described by the difference equation (1)
and exhibiting chaos, and suppose a mutant phenotype tries to invade the resi-
dent. When is invasion possible? Since the mutant is initially rare, the number
of offspring of the mutant in each generation depends on the density of the resi-
dent. Let w,,(x) be the fitness function of the mutant, which calculates the number
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of offspring per individual when the density is x. Let {x,} be the (chaotic) density
time series of the resident. Then the mutant can invade if the geometric mean of
the numbers w,(x,) is larger than one. Mathematically, this is expressed as the
condition (Metz et al. 1992)

T-1 T
E&(IIWA&O >1. )
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Now consider a mutant that has the same nominal parameter values as the chaotic
resident but that controls its dynamics with the adaptive strategy described
above. Numerical simulations show that such a mutant can always invade the
resident. Invasion results in a high density of the mutant, which is then able to
control the dynamics of the whole system: invasion leads from chaos to stable
equilibrium. But why is the mutant able to invade?

The reason is found in the distribution of offspring numbers. For the resident,
this distribution is given by the set {w.(x,)}, where, according to equation (1),

A

1+ (a0)® (10)

wi(x) =
is the reproductive output per resident individual at density x. Note that the
geometric mean of {w.(x,)} is equal to one, since the resident neither grows nor
declines on average (i.e., it persists through time). The mutant’s distribution
{wn(x)} is determined by its fitness function

_ A
wp(x) = T @r’ (1)
where
a=ay+c(x—x%) (12)

according to equation (5). The constant c is given by equation (6), and the adjust-
ment of a is subject to 0.95 - a; = a = 1.05 - a,; that is, if a as calculated from
equation (12) is smaller (greater) than 0.95q, (1.054,), we set a = 0.95a, (1.054,).
The moments of this distribution determine the geometric mean fitness of the
invading mutant. Intuitively, the odd moments measure the skewness of the distri-
bution, while the even moments measure its width. Extrapolating from Gillespie’s
principle, larger even moments tend to decrease the geometric mean, while larger
odd moments, that is, skewness to the right, tend to increase the geometric mean.
This argument can be made more formal by considering the Taylor series expan-
sion of the logarithm
e (~ Dk [

log(l+x) = » —2r—=x-T 4+ ...
£k +1 273

Since the mutant is always able to invade, one would expect the distribution

{wn(x)} to have larger odd moments and smaller even moments than the distribu-
tion {w,(x,)}. However, in most cases the first moment of the mutant, that is, the
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arithmetic mean number of offspring, is lower than that of the resident. There-
fore, higher moments must be responsible for the fact that invasion is possible.
In some cases invasion can be attributed to Gillespie’s principle: the second
moment, that is, the variance, of {w,(x,)} is lower than that of {w,(x,)}. That the
variance of the mutant is lower makes sense intuitively, for consider again the
control mechanism of the mutant. It works by increasing the carrying capacity
in generations with high density, which dampens the subsequent crash, and by
decreasing the carrying capacity in generations of low density, which dampens
the subsequent outbreak. This dampening of fluctuations should lead to a lower
variance of offspring numbers and hence to a selective advantage. However, two
factors tend to prove this intuition wrong: increasing the complexity of the resi-
dent dynamics, that is, the modulus of equation (3), and increasing the growth rate
M. Both factors shift the selection pressure from the variance to higher moments of
the distribution of offspring numbers. In general, numerical simulations indicate
that there is a number n such that the following holds: (i) the odd moments of
{wqn(x,)} of order <n are smaller, while the even moments of {w (x,)} of order <n
are larger than those of {w,(x,)}, so that all moments of order < favor the resident
and hence contradict invasion; (ii) for moments of order =n the opposite holds,
so that moments of order =n favor the mutant. Thus invasion is due to moments
of order =n. In figure 1 the number »n is shown for different combinations of the
intrinsic growth rate A and the modulus of equation (3). In many cases n = 3,
which means that the variance of the mutant is higher than that of the resident
(and the average number of offspring is still lower), yet the mutant is able to
invade. Under these conditions the third and higher moments determine the
course of evolution. Despite a higher variance, the skewness of the distribution
{wmn(x,)} implies a higher geometric mean fitness for the mutant. This leads to an
extension of Gillespie’s evolutionary principle: natural selection also acts on
higher moments of the distribution of offspring numbers. In fact, selection on
higher moments can overcome selection on the first, second, and even the third
moments, as the examples reported here show. The results also indicate that
selection acting on higher moments becomes more important with increasing vari-
ability in offspring number.

The consequence of the invasion of the mutant is stable equilibrium dynam-
ics for the whole population. Quite different dynamics can result if an evolu-
tionary trade-off is assumed for the control mechanism. In general, given a resi-
dent with chaotic dynamics described by equation (1), the problem of when a
mutant can invade whose dynamics are also of the form described by equation
(1) but given by a different set of parameters is difficult and currently under
investigation (Doebeli 1995). However, if it is assumed that two of the three
parameters of the mutant are the same as for the resident, selection on the third
parameter can easily be described: the mutant can invade if the third parameter
is such that the mutant’s equilibrium density (eq. [2]) is higher than that of the
resident. Thus a higher A\, a lower 4, and a lower b all imply invasion if the other
two parameters are fixed. An evolutionary trade-off for the control mechanism
can therefore be incorporated by assuming that the controlled mutant has a lower
A\, a higher (nominal) a,, or a higher b. If the trade-off is too large, the mutant
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Fic. 1.—Lowest-order moment favoring the mutant. For different parameter values the
number # is listed such that moments of the distributions of offspring numbers that are of
order <n favor the uncontrolled resident and moments of order =» favor the controlled
mutant (see text). In all cases invasion is possible and is thus due to selection on moments
of order =n. To obtain the distributions {wy(x,)} and {w.(x,)}, the resident time series {x,}
was obtained by first iterating eq. (1) long enough to eliminate transients, i.e., to let the
trajectory approach the chaotic attractor, and then by iterating 250,000 times. The distribu-
tions were then obtained by applying the functions w, and w,, described in the text to this
time series. In all cases the parameter a was set to a (nominal) value of 0.1, while the intrinsic
growth rate A and the modulus J of eq. (3), determining the dynamics of the resident, were
varied. For fixed \, J is given by a choice of the parameter b. For low \ and J, all moments
favor the mutant (n = 1). Increasing A and J tends to increase n and thus to shift selection
pressure onto higher moments. In the most extreme case (lower right corner), the first four
moments all place the mutant at a disadvantage, yet invasion is possible.

cannot invade, but if invasion is possible it often results in intermittent chaos
(fig. 2): the mutant is able to invade and temporarily stabilize the dynamics; in
this state the density of the mutant starts to decline again, because at the equilib-
rium the mutant is an inferior competitor to the resident because of the trade-off.
For the same reason the density of the resident is increasing, until its chaotic
dynamics dominate the system. After a short period of erratic fluctuations the
resident’s density is back at low values, and the mutant controls the dynamics
again for a relatively long time. The result is a form of ‘‘almost stable’” chaos. I
have described other evolutionary invasion scenarios that lead to intermittent
chaos in earlier articles (Doebeli 1993, 1994).

DISCUSSION

This note is about combining two evolutionary problems. The first concerns
the evolution of simple population dynamics. Since it was realized by May (1976)
that chaos occurs as a rule in even the simplest ecological models, there has been
considerable debate about how often complex dynamics occur in natural systems.
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FiG. 2.—Invasion leading to intermittent chaos. After a few hundred generations a small
amount of controlling mutants is introduced into a chaotic resident population. A trade-off
for the control mechanism is given by assuming a lower intrinsic growth rate of the mutant.
The invading mutant is able to control the dynamics of the whole system temporarily (A).
In this state the mutant’s density gradually declines (B), because at the carrying capacity it
is competitively inferior to the resident because of the trade-off. At the end of the stable
period the resident’s density has increased enough for its chaotic dynamics to dominate the
system (C). After a short, intermittent period the mutant is again able to control the dynam-
ics, and the process starts anew. Note that the length of the stable periods is not always the
same and instead is given by a statistical distribution (Schuster 1984, chap. 4). The parameter
values for the figure were as follows: a = 0.1, b = 4.21, and A = 20 for the resident; a =
0.1 (nominal), & = 4.21, and A = 19.7 for the controlling mutant.

Copyright © 1995. All rights reserved.



486 THE AMERICAN NATURALIST

It is widely believed that chaos does not occur frequently (Berryman and Millstein
1989; but see Hastings et al. 1993). However, evolutionary arguments for this
belief usually involve group selection (Thomas et al. 1980), in part because theo-
retical studies based on individual selection suggest that both simple and complex
dynamics can evolve (e.g., Turelli and Petry 1980; Ferriere and Gatto 1993). The
mechanism reported here belongs to the class in which individual selection leads
to evolution from complex to simple dynamics: a phenotype that controls its
dynamics by adjusting demographic parameters has a selective advantage over
an uncontrolled phenotype exhibiting chaos.

The second evolutionary problem concerns the reasons for this selective advan-
tage. Typically, the invading mutant has a lower average number of offspring.
However, since it can invade, its mean geometric fitness must be larger than that
of the resident. Following Gillespie (1977), this should be due to a lower variance
of the offspring numbers of the mutant. Since the control mechanism tends to
dampen fluctuations, this is intuitively expected and indeed correct in some cases
(fig. 1). But with increasing complexity of the dynamics and hence increasing
variance of offspring numbers, the intuition tends to be incorrect, and the mutant
can have a higher variance as well as a lower average number of offspring. The
selection pressure then shifts to higher moments. This confirms Gillespie’s insight
that in a variable environment, which is given here by fluctuating densities, the
distribution of offspring numbers determines the course of evolution. What is
new here is that selection on the third and higher moments can also be crucial
and that it can overcome selection on the first and second moments. A mutant
with a lower average and a higher variance of offspring numbers is able to invade
if its distribution is more skewed to the right than that of the resident. If evolution-
ary trade-offs between the control mechanism and the parameters in the model,
for example, the intrinsic growth rate, are incorporated, the average offspring
number of the mutant is even lower, but selection acting on higher moments can
still make invasion possible. Under these circumstances invasion can result in
intermittent chaos (fig. 2). Every time the controlled mutant stabilizes the density
at the equilibrium, its density gradually decreases, owing to the trade-off, and
stabilization ceases for a short period. Note that intermittent chaos in natural
populations would not be distinguished from stable equilibrium dynamics if mea-
surements were made during the long phases of constant dynamics.
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